
Journal of Korean Society for Internet Information 2013. Oct: 14(5): 39-48 39

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로
한 성능 에 지 심 자원 로비 닝

☆

Performance and Energy Oriented Resource Provisioning in Cloud Systems
Based on Dynamic Thresholds and Host Reputation

랭크 엘리호데1 이 재 완2*

Frank I. Elijorde Jaewan Lee

요 약

정의된 SLA의 QoS를 지키기 해서, 클라우드 시스템은 동 인 사용 패턴에서 발생하는 변화무 한 작업 부하를 처리해야 한다.

서비스 이외에도 에 지 소비를 최소화 하는 것이 한 새로운 심사이다. 이는 클라우드 데이타 센터에서 가상화된 자원을

할당할 때 클라우드 제공자들은 에 지와 성능의 상 계를 고려해야 한다. 본 논문에서는 호스트 컴퓨터의 작업부하 수 을 탐
지하기 해 동 임계치를 기반으로 한 자원 로비 닝 방안을 제시한다. VM선정 정책은 이주할 VM을 선택하기 해 활용 데이터

를 사용하며, VM 할당 정책은 서비스 평 도에 따라 VM들을 호스트에 지정한다. 시뮬 이션을 통해 연구결과를 평가하 으며, 시뮬

이션 결과 이주를 지원하지 않는 비 력 방법뿐만 아니라 동 임계치, 임의 선정 정책보다 성능이 우수함을 보 다.

주제어 : 클라우드 컴퓨 , 자원 로비 닝, 클라우드 데이타 센터 가상화, 그린 컴퓨

ABSTRACT

A cloud system has to deal with highly variable workloads resulting from dynamic usage patterns in order to keep the QoS within

the predefined SLA. Aside from the aspects regarding services, another emerging concern is to keep the energy consumption at a

minimum. This requires the cloud providers to consider energy and performance trade-off when allocating virtualized resources in cloud

data centers. In this paper, we propose a resource provisioning approach based on dynamic thresholds to detect the workload level

of the host machines. The VM selection policy uses utilization data to choose a VM for migration, while the VM allocation policy

designates VMs to a host based on its service reputation. We evaluated our work through simulations and results show that our work

outperforms non-power aware methods that don’t support migration as well as those based on static thresholds and random selection

policy.

☞ keyword : Cloud Computing, Resource Provisioning, Virtualization, Green Computing

1. Introduction

As a new computing paradigm, cloud computing allowed

the provisioning of application services and computational

resources through the Internet which provides an efficient

and economical way to share resources within organizations

as well as promote business strategy. With this approach,

1 Institute of ICT, West Visayas State University, Philippines
2 Dept. of Information and Communication Engineering, Kunsan

National University, Korea
* Corresponding author (jwlee@kunsan.ac.kr)
☆ This paper was supported by research funds of Kunsan National

University
[Received 2 June 2013, Reviewed 13 June 2013, Accepted 10
September 2013]

clients are charged only for the actual resource usage. It

provides cloud consumers with immediate and cost-effective

way to scale down or scale up their system without having

to worry about the constraints imposed by physical resources

such as hardware. Currently, the research and development of

various cloud-based services are rapidly increasing [1] while

at the same time, improvements in the cloud system

infrastructure continue to move forward [2].

However, the provisioning of services over the cloud

brings many challenges. To efficiently serve the customers,

the virtualized resources have to be carefully configured and

allocated according to the incoming workloads. As such,

resource demand in the cloud is considered more

unpredictable as compared with traditional IT environments.

ISSN 1598-0170 (Print)
ISSN 2287-1136 (Online)
http://www.jksii.or.kr

http://dx.doi.org/10.7472/jksii.2013.14.5.39

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

40 2013. 10

It is therefore necessary for the provider to accurately

estimate and predict resource utilization in order to maintain

the quality of service (QoS) as well as to optimize the

utilization of physical resources. By realizing this, the

Service Level Agreement (SLA) can be properly met and

idle resources can be minimized leading to mutual benefits

for the cloud consumer and the cloud service provider.

However, the increasing energy consumption of

computing systems has started to limit further performance

growth due to overwhelming electricity bills and carbon

dioxide footprints. Therefore, the goal of the computing

system design has been shifted to power and energy

efficiency [3].

With the goal of maintaining QoS as well as setting the

balance between performance and energy efficiency, we

present a resource provisioning approach for cloud systems

which considers adaptive monitoring and allocation of

resources. Specifically, the optimal consolidation of

virtualized resources is achieved by dynamically adapting the

system’s utilization threshold to the resource consumption

data. As such, it enables the cloud infrastructure to easily

scale up or scale down the provisioned resources based on

the truly occurring usage scenario. To verify the performance

of our proposed approach, we compare it with other

previously proposed techniques and also with non-optimized

conventional approaches.

2. Related Work

2.1 Load prediction in Cloud Data Centers

In order to efficiently provision computing resources in

the cloud, system administrators need the capabilities of

characterizing and predicting server workload. In [4], they

use data center traces to search for repeatable workload

patterns on different servers. The experimental results

conclude that the method could help system administrators

better understand group-level workload characteristics in a

cloud and make more accurate predictions on workload

changes over time. Consolidation of virtual machines using

correlation or peak cluster-based placement is proposed in

[5]. A trace-based workload forecasting method was used in

[6] for capacity management. These approaches rely on the

statistical measurements of individual workload time series to

predict future capacity demand. Another approach for the

management of virtualized data centers was proposed in [7].

The problem of scheduling tasks in a data center and their

allocation to physical machines is expressed as a

multi-objective optimization problem. An improved strategy

based on the tendency with several steps backward was

introduced in [8], using polynomial fitting method to produce

the prediction values. Presumably, these models generally

perform well; however, they have an obvious source of error

whenever the time series changes its direction.

2.2 Resource Provisioning in Virtualized

Environments

The authors of [9] proposed an algorithm for virtual

machine allocation based on the ant colony optimization

meta-heuristic. The core of their approach is on the

generation of solutions that minimizes the number of

physical machines used in order to decrease the energy

consumed by the data centers. A study in [10] presents a

statistical approach for the adaptive allocation of virtual

machines to physical servers. The authors looked into the

possibility of live migration of virtual machines both to

avoid the occurrence of servers with small workloads and to

avoid the possible overloading of the servers which may

result in a violation of the service agreements. Alternatively,

overbooking [11] is used to improve the overall resource

utilization. By regulating resource consumption, performance

isolation among co-located applications is achieved by

guaranteeing that no application can consume more resources

than those allocated to it. In contrary, dedicated hosting is a

dynamic provisioning approach characterized by physical

machines that run at a single application wherein workload

increases are handled by spawning a new replica of the

application on idle servers.

2.3 Energy Efficiency in Cloud Data Centers

The work in [12] is considered as one of the first works

which were able to apply power management in a virtualized

data center setting. The authors proposed a system

architecture for the management of data center resources

which is divided into local and global policies. At the local

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

한국 인터넷 정보학회 (14권5호) 41

Virtual Machines

Local Resource Manager

Physical Server Physical Server Physical Server

Cloud Service Space

Clients

Service Broker

Service DirectoryRequest Handler

Policy ManagerService Accounting

Service Provisioning Layer

VM Manager

Load PredictorLoad Distribution Monitor

Replication ManagerMigration Handler

Resource Management Layer

Virtual Resource Manager

Application Manager

Coordinator Module

(Figure 1) The architecture of the proposed cloud

system.

level the system leverages the guest OS’s power management

strategies. The global manager gets the information on the

current resource allocation from the local managers and

applies its policy to decide whether the VM placement needs

to be adapted. Reducing power consumption in server

clusters has been the aim of [13] and [14]. To achieve this,

they utilize CPU clock throttling while switching entire

servers on/off as needed, depending on the incoming

workload. However, considering switching costs, a study in

[15] pointed out two crucial issues that must be addressed:

First, turning servers off in a dynamic environment could be

risky in terms of QoS. If servers were just powered off

expecting a lighter workload and the workload suddenly

increases, this would seriously affect the QoS received by

users. Similarly, excessive power cycling of a server could

reduce its reliability. These two scenarios, if not properly

addressed would result to an SLA violation which would

require the provider to pay the customer for every failed

delivery of service.

3. Performance Aware and

Energy Efficient Resource

Provisioning

3.1 Cloud System Architecture

As shown in Figure 1, the proposed cloud system is

presented as a three-layer structure composed of the Service

Provisioning, Resource Management, and Virtual Machine

layers. Each layer includes various components which

contribute to the functionalities of the system.

The core of the provisioning mechanism resides within

the Resource Management Layer, which is the focus of the

host utilization monitoring and optimization approach that we

propose. Specifically, the load predictor and VM manager are

responsible for the prediction and efficient management of

the resources utilized by the services provided to the users.

Aside from keeping track of the host’s load, this layer also

concerns the creation of the virtual platform, followed by an

initial installation of the necessary software components,

along with the configuration and subsequent deployment of

the software service. Put together, our VM selection and VM

assignment strategies handle the distribution, replication, and

migration of services within the virtualized environment

through the load distribution monitor, replication manager,

and migration handler.

3.2 Host Utilization Monitoring and

Optimization

Physical machines can turn into hot spots in which

available resources are not sufficient to satisfy the provisioning

requirements; while cold spots are over-provisioned hosts

which lead to underutilization of resources. From a cloud

provider’s point of view, handling hot spots is extremely

important in order to meet the quality of service agreed upon

with the clients. Moreover, eliminating cold spots would also

leverage the optimal utilization of physical resources and

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

42 2013. 10

eliminate resource wastage thereby taking advantage of

virtualization to its full potential.

1. Algorithm: Optimize Utilization
2. While request <> 0
3. uThreshold= GetUpperThreshold()
4. lThreshold= GetLowerThreshold()
5. For each host in ActiveHosts{
6. if hostOverloaded(host, uThreshold)
7. HMigList.Add(host)
8. if hostUnderloaded(host, lThreshold)
9. HMigList.Add(host)
10. }
11. For each host in HMigList{
12. SelectVM(host) //select vm from host
13. VMList.Add(vm)
14. }
15. clear HMigList
16. For each vm in VMList{
17. AllocateVM(vm,host)
18. }
19. Clear VMList
20. End while

Algorithm 1. The utilization optimization approach.

To attain this, a number of considerations have to be met.

First, we need to know whether a host is overloaded which

would require migrating one or more VMs to a less loaded

host. Similarly, an underloaded host also needs to migrate its

VMs to another host so it can be put to a low-power mode.

Another consideration is the policy for the selection of VMs

that need to be migrated. Finally, the VMs chosen for

migration need to be re-deployed to new hosts; this process

is not straightforward and also needs an efficient technique.

Below, we show the overall algorithm for the optimization

approach.

As shown in algorithm 1, the process starts by setting the

upper and lower thresholds for the utilization level of the

hosts. A naïve solution to this problem is to simply set fixed

values for the thresholds. However, in an environment where

heterogeneous services share the same physical resources,

workloads are highly dynamic. This makes fixed utilization

thresholds unsuitable. For this reason, we devise an adaptive

method which extracts time series data of the host’s most

recent utilization history. Using the derived accumulated data,

we determine its standard deviation:

 (1)

Where {x1,x2,.,xN} are the observed values of the host’s

utilization history, while is the average utilization level for

the given N samples. Put in the case of CPU utilization, a

higher deviation among data points results to a lower value

of the upper utilization threshold. Furthermore, a higher

deviation would likely lead to a CPU utilization close to

100% resulting to an SLA violation. Upon deriving the

standard deviation, we obtain the upper threshold as:

 (2)

where parameter s is a value which influences the tradeoff

between QoS and energy efficiency. Once the upper

threshold has been determined, the next step is to derive the

lower threshold. To obtain the lower threshold, we use the

following equation:

 (3)

The variable p is used to determine the gap between the

upper and lower threshold. From our initial experiment, we

observed that the distance between the thresholds also has a

significant impact on the performance of the cloud system’s

provisioning mechanism.

3.3 Virtual Machine Selection Strategy-

Minimum Mean Volume

Following the previous phase, comes the mitigation and

load balancing processes. Right after an overloaded host has

been identified, it is necessary to decide which VM needs to

be migrated to a less loaded host. Instinctively, we can

simply choose to migrate either an under-provisioned or

over-provisioned virtual machine. However, simply selecting

a heavily utilized VM can disrupt the system and affect

service delivery due to the resulting overhead. Merely

choosing an underutilized VM at the moment may not fully

reflect its usage precedents prior to its selection. A VM

which currently appears underutilized, may suddenly have

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

한국 인터넷 정보학회 (14권5호) 43

huge spikes in resource consumption which raises the

possibility of disrupting the host to which it is migrated. To

realize the goal of minimizing the overhead resulting from

migration, we propose an approach which considers the

VM’s resource consumption pattern. The resource

consumption of a VM is defined as the volume v of the

resources actually consumed:

 (4)

In equation 4, the volume is derived by summing up the

fractions of resources (CPU, RAM, Network Bandwidth)

actually consumed by the VMs which is multiplied with

corresponding weights. The weight values are assigned

depending on the type of the VM machine to be provisioned.

For example, a VM for serving compute intensive

applications would give more weight to CPU while a

transactional database server would require more weight for

network bandwidth. From this, the volume set is defined as

{v1,v2,…,vN} composed of the VM’s resource consumption

accumulated on a given period. Finally, the mean volume μ

of a VM is derived:

 (5)

These calculations are then used in the VM selection

process. As shown in Algorithm 2, the process starts by

acquiring the list of hosts that need to migrate VMs which

is then sorted according to decreasing utilization levels. Each

host will then have their respective VM lists traversed, in

which the variables curVolume and minVM are updated in

each iteration should the function GetMeanVolume(vm)

generate a value which is less than the current one. The

update process goes on until the algorithm has inspected all

VMs, which in return appends the VM with the lowest mean

volume to the migration list. The same process is carried out

for all of the remaining hosts. Finally, the VM selection

routine is terminated and the final VM migration list is

returned.

1. Algorithm: Reputation-based Best Fit
2. Input: VMList, ActiveHosts
3. Output: NewHosts
4. //Updated active hosts list
5. Sort(ActiveHosts, utilization)
6. //sort hosts, decreasing utilization
7. Sort(VMList, volume)
8. //sort VMs, decreasing volume
9. For each vm in VMList{
10. BestReputation = Max
11. AssignedHost = null
12. For each host in ActiveHosts {
13. if host.canSupport(vm){
14. curReputation = GetSLAHistory(host)
15. if curReputation < BestReputation {
16. BestReputation = curReputation
17. NewHosts.update(vm, host)
18. Break
19. }
20. }
21. }
22. }
23. Return NewHosts

(Algorithm 2) The VM Selection Strategy.

3.4 Virtual Machine Assignment Strategy -

Reputation-based Best Fit

 Once the VMs that need to be migrated have been

chosen, the next step is to assign them to their new hosts.

The strategy for choosing the hosts for the migrating VMs

is concerned not only about finding hosts that can support

them but also to maintain the desired system throughput by

keeping the disruption as little as possible. We believe that

simply choosing a capable host based on the principles of

bin packing is not enough; the problem of VM consolidation

is more than just provisioning resources. It should also

consider the past performance of the hosts in order to

anticipate their future behavior.

To do this, we propose a scheme for VM assignment

based on the host’s reputation with regards to SLA

violations. The SLA metrics that we considered are the

length of time an SLA violation occurred, and the ratio of

the actual resource volume allocated to the volume requested.

Combining the metrics, we express the SLA violation as:

 (6)

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

44 2013. 10

where is the difference between the end time and start

time of an SLA violation, and is the actual fraction of the

requested resource that has been allocated to VMs i to N

respectively. Finally, equation (6) is subjected to equation (7)

in order to derive the mean SLA violation of a host for a

given data set N:

 (7)

Aside from the capability to support a given VM, another

criterion is to look at the host’s previous performance based

on how well it upheld the SLA. The idea is to migrate

high-volume VMs to hosts with outstanding reputation based

on the lightness of SLA violations they got involved with.

The lower the SLA violation caused by a host, the more

likely it will be chosen to handle a VM of higher volume.

That way, light VMs can just be migrated to hosts with fair

reputation. The proposed approach is shown in Algorithm 3.

Initially, the hosts capable of supporting the VMs to be

migrated are listed in decreasing order according to their

current utilization level. This is done in support of the Best

Fit approach for Bin Packing which aims to find a host that

can provision the required volume of the incoming VM while

at the same time leaving the least unallocated resource.

Similarly, the VMs are also sorted according to their volume

size, giving priority to those with high volumes in acquiring

the better hosts. Once the host and VM lists have been

established, the algorithm starts to traverse the VMList and

initializes the variables for keeping track of the current best

reputation and host designation for the given VM. Each

active host will then be checked if it can support the VM;

if so, the algorithm will check further if it has a better

reputation than the previous one. For each VM, the process

keeps on until a suitable host is found. The entire procedure

is repeated until all the VMs have been successfully

migrated.

1. Algorithm: Minimum Mean Volume
2. Input: HMigList, //host migration list
3. Output: VMList //VM migration list
4. Sort(HMigList, utilization)
5. //sort hosts, decreasing utilization
6. For each host in HMigList {
7. curVolume = Max
8. For each vm in host{
9. vmVolume = GetMeanVolume(vm)
10. if vmVolume < curVolume {
11. curVolume = vmVolume
12. minVM=vm
13. }
14. VMList.Add(minVM)
15. }
16. }
17. Return VMList

(Algorithm 3) The VM allocation strategy.

4. Simulation and Evaluation Results

4.1. Simulation Setup

To ensure the repeatability, scalability, and dependability

of experiments, we use simulation to evaluate the

performance of the proposed methods. For the simulation

platform, we used CloudSim toolkit [16]; a simulation

framework made in Java aimed at cloud computing

environments. As opposed to other simulation toolkits,

CloudSim enables the modeling of virtualized environments,

as well as supporting on-demand provisioning of resources,

and their management. By modifying and extending parts of

the simulator, we implemented our proposed algorithms.

We built the setup of our simulated data center by using

realistic models of VM instances and host machines. For the

400 VM instances, we used 4 types of VM instances with

characteristics similar to the Amazon EC2 instance types in

Table 1 [17]. As with the hosts, we considered 100 physical

machines which were equally distributed among the two

types of servers with specifications and power consumptions

derived from [18] and [19]. The first variant is HP ProLiant

DL380 G7 (6 cores, Intel Xeon X5675 3.07 GHz processor,

12GB RAM) with 2 CPUs enabled. The other is IBM

System X3550 M3 (6 cores, Intel Xeon X5670 2.9 GHz

processor, 12GB RAM) with 2 CPUs enabled. Both servers

were configured with 1000 Mb network bandwidth.

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

한국 인터넷 정보학회 (14권5호) 45

(Table 1) VM instances specification.

Instance

Type

CPU

(1 compute unit = 1.0 Ghz)

RAM

(GiB)

M1 Small

Instance

1 core with 1 EC2

Compute Unit
1.7

M1 Medium

Instance

1 core with 2 EC2

Compute Units
3.75

M1 Large

Instance

2 cores with 2 EC2

Compute Units each
7.5

High-CPU

Medium

Instance

2 cores with 2.5 EC2

Compute Units each
1.7

4.2. Evaluation Results

To determine the optimum configuration, we first

performed experiments on different values for the parameters

s and p. As shown in Figure 2, setting the value higher

would result to a lower SLA violation rate although at the

expense of a higher energy consumption:

(Figure 2) The effect of tweaking parameter s on

the energy consumption and SLA

violation.

In Figure 3, we show the respective levels of SLA

violation for a given value of parameter p. The result

confirms that setting the value over 0.7 would result to

unpredictable SLA behavior and higher energy consumption

which brings us to a conclusion that 0.8 and .0.9, although

have initially shown lower SLA violations are not safe for

use. The basis for this conclusion is that, setting parameter

p to a value higher than 0.7 would increase the gap between

the upper and lower utilization thresholds. Furthermore, this

would also result to a significantly reduced lower threshold

which affects the algorithm’s judgment towards underutilized

hosts. With such configuration, the optimization routine

becomes overly unbalanced due to its impractical bias

towards low SLA violations. This results to fewer VM

migrations, fewer host shutdowns, and disproportionately

high energy consumption. From this, we decide that the best

configuration for the parameters s and p that would produce

the best Energy X SLA combination is 3.0 and 0.7

respectively.

(Figure 3) The influence of parameter p on SLA

After we derive the best configuration for our proposed

scheme, we evaluate its performance and compare it with

other methods. The methods chosen for comparison are: a)

The Non Power-Aware (NPA) policy, which does not

employ energy efficient techniques and assumes 100% CPU

host utilization thereby consuming maximum power at any

given instance. b) Dynamic Voltage and Frequency Scaling

(DVFS), which uses dynamic voltage scaling to reduce the

energy consumption of hosts. c) Threshold-Based (THR)

approach, which requires setting the upper limit for host

utilization and keeping the total CPU utilization below such

threshold d) Random Selection (RS), which keeps the

utilization level of hosts below the upper threshold by

randomly selecting a number of VMs and migrating it to less

loaded hosts. As for the evaluation metrics, we compare our

work with the aforementioned methods in terms of energy

consumption, SLA violation rate, number of VM migrations,

and the Energy X SLA combination.

In Figure 4, we present the result of evaluating the

respective energy consumption of the given resource

provisioning techniques. As expected, the NPA approach has

the highest energy consumption at around 560 KWh

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

46 2013. 10

(Figure 4) Total energy consumption.

followed by DVFS at around 520, then by Dynamic Double

Threshold (DDT) and RS both close to 200, and THR at

around 195. This initial result indeed confirms that energy

efficiency is really important in large scale computing

infrastructures such as cloud data centers.

Before we go further, we would like to point out that in

Figures 5, 6, and 7, the metrics presented does not apply to

NPA and DVFS. This is for the reason that both approaches

have no capabilities to dynamically optimize resource

allocation, as well as monitoring SLA violations and energy

consumption.

(Figure 5) Overall SLA violation rate.

The results presented in Figure 5 show that the DDT

approach has the lowest overall SLA violation rate at 0.75%;

followed by Random Selection approach at around 2.40%,

while the Threshold-Based approach has the highest SLA

violation rate at about 4.75%. The result implies that in the

entire operation of the data center, the DDT approach

performed best and was able to deliver the agreed SLA level

at 99.25%, while the Threshold-Based provided the agreed

performance at the lowest rate of 95.25%. This tells us that

fixed utilization thresholds are not suited for environments

such as cloud data centers which are designed to handle

highly dynamic workloads involving unpredictable usage

patterns.

Shown in Figure 6 is the number of VMs migrated during

the entire operation of the simulated data center. In the

following metric, DDT has the smallest number of migrated

VMs at around 9000, followed by the RS approach at about

19000, and THR at a little more than 20000. This supports

the result from the previous metric in the sense that lesser

migrations would minimize the disruption of a VM’s

operation. This is due to the fact that each time a VM is

migrated, certain overheads would cause the VM to suffer

temporary performance degradation thereby resulting to an

SLA violation. The cost of migrating a VM depends on its

actual size as well as its current utilization level at the time

that the migration process was invoked.

(Figure 6) Number of VMs migrated.

Finally, we decide on the performance of the three

power-aware optimization schemes using the metric which

combines energy efficiency and performance quality derived

from the product of their respective energy consumption and

SLA violation rate. As shown in Figure 7, DDT produced

the best result at around 150, followed by RS at about 490,

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

한국 인터넷 정보학회 (14권5호) 47

and the worst is that of THR at more than 900. Despite the

similarity in the total energy consumption of DDT, THR, and

RS in Figure 4, the low Energy X SLA value of DDT is

heavily influenced by its very minimal SLA violation rate

which is less than 1%. This brings us to a conclusion that

the technique of how virtualized resources in a cloud data

center are provisioned and utilized leads to effective VM

consolidation. Thus, achieving such efficiency sets the

desired balance between service quality and energy

efficiency.

(Figure 7) SLA violation and energy consumption

combined.

5. Conclusion and Future Work

In this paper, we presented an efficient resource

provisioning approach which considers service quality and

energy efficiency in a cloud data center. By dynamically

adjusting the utilization thresholds, it can easily adopt to the

dynamic workload behavior of the system. Furthermore, a

VM selection technique based on the actual resource

consumption history is also presented. Finally, a

reputation-based VM assignment strategy is employed to

maintain system throughput and minimize overheads brought

about by VM migration. Evaluation results indicate that our

approach surpassed non-power aware methods that don’t

support migration as well as those based on static thresholds

and random selection policy. The significant performance of

our work is verified by its outstanding combination of very

minimal SLA violation and low energy consumption.

In our future work, we intend to incorporate autonomous

hosts and see how it can improve resource provisioning in

cloud data centers. We believe that incorporating

decentralized resource management, allocation, and

monitoring can greatly improve the throughput and energy

efficiency of a cloud system.

References

[1] K. Gai, S. Li, Towards Cloud Computing: A

Literature Review on Cloud Computing and Its

Development Trends, Multimedia Information

Networking and Security (MINES), 2012 Fourth

International Conference on, (2012) pp.142-146.

[2] A. Tantar, Alexandru-Adrian; A. Q. Nguyen; P.

Bouvry, B. Dorronsoro, E.G. Talbi: Computational

intelligence for cloud management current trends and

opportunities, Evolutionary Computation (CEC),

2013 IEEE Congress on, (2013) pp.1286-1293.

[3] A. Beloglazov, R. Buyya, Y. C. Lee, and A.

Zomaya: A taxonomy and survey of energy-efficient

data centers and cloud computing systems, Univ. of

Melbourne, Tech. Rep. CLOUDS-TR-2010-3 (2010).

[4] Khan, X. Yan, T. Shu, N. Anerousis: Workload

characterization and prediction in the cloud: A

multiple time series approach, Network Operations

and Management Symposium, (2012) pp.1287-1294.

[5] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R.

Kothari: Server workload analysis for power

minimization using consolidation, in Proceedings of

USENIX Annual Technical Conference (2009).

[6] J. Rolia, L. Cherkasova, M. Arlitt, and A.

Andrzejak: A capacity management service for

resource pools, In Proceedings of ACM Workshop

on Software and Performance (2005).

[7] X. Kong, C. Lin, Y. Jiang, W. Yan, X. Chu:

Efficient dynamic task scheduling in virtualized data

centers with fuzzy prediction, Journal of Network

and Computer Applications, Vol. 34, (2011) pp.

1068-1077.

[8] Y. Zhang, W. Sun, and Y. Inoguchi: CPU Load

Predictions on the Computational Grid, in Proc. of

IEEE International Symposium on Cluster

클라우드 시스템에서 동 임계치와 호스트 평 도를 기반으로 한 성능 에 지 심 자원 로비 닝

48 2013. 10

◐ 자 소 개 ◑

랭크 엘리호데 (Frank I. Elijorde)

2003년 Western Visayas College of Science and Technology, Philippines BS in Information Technology

2007년 Western Visayas College of Science and Technology, Philippines MS in Computer Science

2011년～ 재 Kunsan National University, South Korea, Graduate Student in Ph. D. Course

심분야 : Distributed systems, cloud computing, data mining, ubiquitous sensor networks, RFID

E-mail : frank@kunsan.ac.kr

이 재 완(Jaewan Lee)

1984년 앙 학교 이학사- 자계산학

1987년 앙 학교 이학석사- 자계산학

1992년 앙 학교 공학박사- 자계산학

1996년 3월~1998년 1월 한국학술진흥재단 문 원

1992년~ 재 군산 학교 교수

심분야 : 분산 시스템, 운 체제, 유비쿼터스 시스템, 클라우드 컴퓨 등

E-mail: jwlee@kunsan.ac.kr

Computing and the Grid, (2006) pp. 321-326.

[9] E. Feller, L. Rilling, C. Morin: Energy-Aware Ant

Colony Based Workload Placement in Clouds,

Technical Report, INRIA (2011).

[10] M. Mastroianni, M. Meo, G. Papuzzo: Self-economy

in cloud data centers: statistical assignment and

migration of virtual machines, In Proc. of the 17th

International Conference on Parallel Processing, Vol.

1 (2011).

[11] B. Urgaonkar, P. Shenoy, and et al.: Resource

overbooking and application profiling in shared

hosting platforms, In Proc. OSDI (2002).

[12] R. Nathuji and K. Schwan, Virtualpower: Coordinated

power management in virtualized enterprise systems.

ACM SIGOPS Operating Systems Review (2007)

pp.265-278.

[13] P. Ranganathan, P. Leech, D. E. Irwin, and J. S.

Chase: Ensemble-level power management for dense

blade servers, in Proc. of the 33th Annual Intl.

Symposium on Computer Architecture (2006).

[14] C. Lefurgy, X. Wang, and M. Ware: Server-level

power control, in Proc. of the Intl. Conference on

Autonomic Computing (2007).

[15] D. Kusic, J. O. Kephart, J. E. Hanson, N.

Kandasamy, and G. Jiang: Power and performance

management of virtualized computing environments

via lookahead control, Cluster Computing, vol. 12,

no. 1, (2009) pp. 1-15.

[16] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D.

Rose, Buyya R: CloudSim: a toolkit for modeling

and simulation of Cloud computing environments

and evaluation of resource provisioning algorithms.

Software: Practice and Experience (2011) pp. 23-50.

[17] “Amazon EC2 Instance Types”,

http://aws.amazon.com/ec2/instance-types

[18] “Standard Performance Evaluation Corporation”,

http://www.spec.org/power_ssj2008/results/res2011q1/

power_ssj2008-20110209-00353.html

[19] “Standard Performance Evaluation Corporation”,

http://www.spec.org/power_ssj2008/results/res2010q2/

power_ssj2008-20100315-00239.html

