• Title/Summary/Keyword: Dynamic Soil Stiffness

Search Result 148, Processing Time 0.02 seconds

MASW FOR QUANTIFYING CHANGE IN SHEAR WAVE VELOCITY AFTER DEEP DYNAMIC COMPACTION AT A SOIL SITE

  • ChoonB.Park;RichardD.Miller
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.245-259
    • /
    • 2003
  • Two multichannel analysis of surface wave (MASW) surveys were conducted over a soil site in Tacoma Water's Green River Facility, Washington, where construction of a chemical treatment facility had been planned. The purpose of the surveys was to compare soil stiffness characterized by shear-velocity (Vs) distribution before and after Deep Dynamic Compaction (DDC) operation that was designed to improve the soil stiffness. Site soil consisted of very heterogeneous gravel and cobbles in a sand-and-silt matrix. Results from each survey are represented by two 2-D Vs maps delineating Vs variation of soil below the surveyed lines. One map was constructed from those dispersion curves that were analyzed with a significant amount of subjective judgment involved, whereas the other map was constructed from those dispersion curves analyzed with as much objective information as possible. Comparison of 2-D Vs maps indicates that Vs actually decreased after the DDC operations, possibly due to the loss (or reduction) of cohesive bonding between soil particles caused by the compaction operations.

  • PDF

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.

Analytical Studies for Application of SPT Dynamic Signals to Estimate the Elastic Property of the Soil Deposit (표준관입시험의 동적신호를 이용한 지반 물성치 추정의 해석적 연구)

  • 이병식;김영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.167-177
    • /
    • 2002
  • A test method has been attempted to estimate the soil stiffness by measuring and analyzing dynamic signals of stress waves reflected at the bottom end of the SPT rod contacting a soil deposit. Before conducting a real size testing, a series of parametric studies were conducted in this paper to examine the applicability and the theoretical adequacy of the test method. As a result of these studies, it has been shown that the most significant influence factor affecting the amplitude ratio of the reflected wave to the incident wave at the rod-soil interface was the variation of soil stiffness. Also, the variation of the amplitude ratio was found to be closely related with the variation of impedance ratio of the soil deposit to the SPT rod. As a result, a potential of the test method could be proved to estimate the impedance and the elastic modulus of the soil deposit interfaced with the SPT rod using the test method.

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

A Study on Soil Reaction of Pile Fonndation Subjected to Dynamic Loading (동적 하중을 받는 말뚝기호의 지반반력에 관한 연구)

  • Kim, Young-Su;Lee, Song;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.43-52
    • /
    • 1990
  • To investigate the effects of soil properties of the soft zone around a pile subjected 1,o the horizontal harmonic vibration, the parametric study is perfomed. The determination of the soil reaction or stiffness of the Winkler springs representing the soil around a pile is performed by dividing the soil profile into a number of homogeneous obtained from this study are as follows : 1) The real and imaginary parts of the stiffness show clear variations for the different shear modulus ratios, poisson's ratios, and distance retios to outer boundary as the dimensionless frequency increases. The differences are more pronounced for the imaginary part of the stiffness. 2) The stiffness of soil shows clear decrease. The real parts of the stiffness show larger as the frequency increases. On the other hand, the imaginary parts of the stiffness show smaller.

  • PDF

Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution (동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring (접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석)

  • 김민규;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

3D Transmitting Boundary for Water-Saturated Transversely Isotropic Soil Strata Based on the u-w Formulation (u-w 정식화에 근거한 지하수로 포화된 가로등방성 층상지반에서의 3차원 전달경계)

  • Lee, Jin-Ho;Kim, Jae-Kwan;Ryu, Jeong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.67-86
    • /
    • 2009
  • In this study, a 3D transmitting boundary in water-saturated transversely isotropic soil strata has been developed based on u-w formulation for application to general 3D analysis. Behavior in the far field region is expanded in the Fourier series, and dynamic stiffness for each term is obtained based on the u-w formulation. Transformation of the dynamic stiffness is presented to combine the transmitting boundary with the 3D finite elements for the near field region formulated in a 3D Cartesian coordinate system. The developed transmitting boundary is verified through a comparison of the dynamic behavior of a rigid circular foundation with the results from the existing numerical method. In addition, the developed transmitting boundary is applied to the analysis of the dynamic behavior of rigid foundations of diverse shapes, and the effects of the level of the groundwater table on the dynamic stiffness of a rigid rectangular foundation in the water-saturated transversely isotropic layered stratum are studied.

Soil Dynamics for Vibrating Machine Foundation (기계기초의 지반동력학적 해석)

  • 전준수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.3-25
    • /
    • 2003
  • In this presentation, soil dynamics for vibrating machine foundation is briefly stated, and the result of a model pile test is presented. Analystical methods used in solving for the stiffness and damping factor for pile-soil system are also treated and the results of the test and the calculated values are compared.

  • PDF

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang;Mingxing Zhu;Guoliang Dai;Jiang Xu;Jinbiao Wu
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.167-178
    • /
    • 2024
  • The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.