• Title/Summary/Keyword: Dynamic Safety

Search Result 1,942, Processing Time 0.032 seconds

Design for Safety Flight Dynamic Model for Standard Platform (항공기 표준플랫폼을 위한 안전 비행운동모의 모델 설계)

  • Kim, Hyo-Kwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Safety flight training can be done, through the platform proposed in this paper. This paper designed a flight dynamic model and identified essential functions in order to enable pilots to simulate a training environment similar to the actual. It also design activity diagram, concept as well as class diagram. This paper presents the main features and direction of aircraft to be equipped in the future standard platforms. By design main class of flight dynamic and description. it will help developer to setup the standard platform for aircraft simulation.

Local Dynamic Stability Associated with Load Carrying

  • Liu, Jian;Lockhart, Thurmon E.
    • Safety and Health at Work
    • /
    • v.4 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • Objectives: Load carrying tasks are recognized as one of the primary occupational factors leading to slip and fall injuries. Nevertheless, the mechanisms associated with load carrying and walking stability remain illusive. The objective of the current study was to apply local dynamic stability measure in walking while carrying a load, and to investigate the possible adaptive gait stability changes. Methods: Current study involved 25 young adults in a biomechanics research laboratory. One tri-axial accelerometer was used to measure three-dimensional low back acceleration during continuous treadmill walking. Local dynamic stability was quantified by the maximum Lyapunov exponent (maxLE) from a nonlinear dynamics approach. Results: Long term maxLE was found to be significant higher under load condition than no-load condition in all three reference axes, indicating the declined local dynamic stability associated with load carrying. Conclusion: Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying.

Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure (지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법)

  • Lee, Do-Geun;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

Dynamic Stress Intensity Factors and Dynamic Crack Propagation Velocities in Polycarbonate WL-RDCB Specimen (WL-RDCB 시편의 동적 균열전파속도와 동적 응력확대계수)

  • 정석주;한민구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 1996
  • Dynamic fracture characteristics of Polycarbonate WL-RDCB specimen were investigated. The dynamic crack propagation velocities in these specimens were measured by using both high speed camera system and silver paint grid method developed and justified in the INHA Fracture Mechanics Laboratory. The measured crack propagation velocities were fed into the INSAMCR code(a dynamic finite element code which has been developed in the INBA Fracture Mechanics Laboratory) to extract the dynamic stress intensity factors. It has been confirmed that both dynamic crack arrest toughness and the static crack arrest toughness depend on both the geometry and the dynamic crack propagation velocity of specimens. The maximum dynamic crack propagation velocity of Polycarbonate WL-RDCB specimen was found to be dependent on the material property, geometry and the type of loading. The dynamic cracks in these Polycarbonate WL-RDCB specimens seemed to propagate in a successive manner, involving distinguished 'propagation-arrest-propagation-arrest' steps on the microsecond time scale. It was also found that the relat-ionship between dynamic stress intensity factor and dynamic crack propagation velocities might be represented by the typical '$\Gamma$'shape.

  • PDF

Evaluation of Dynamic Structural Safety of Aged Finger Pier (노후 잔교식 부두의 동적구조 안전성 평가에 관한 연구)

  • 이성우;이상호;지기환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.45-52
    • /
    • 1993
  • Evaluation of structural stability of aged wharf structure of pier type is of great importance for both safety and rehabilitation, Series of field dynamic experiments were performed for berthing impact and the results were used to calibrate analysis model. Through dynamic analysis for design, berthing impact safety of old wharf structure were evaluated. In this paper the procedure and results of experiments and analysis are presented.

  • PDF

Dynamic Analysis of Boom Using Finite Element Method (유한 요소법을 이용한 붐대의 동특성 해석)

  • Han, Su-Hyun;Kim, Byung-Jin;Hong, Dong-Pyo;Tae, Sin-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.987-991
    • /
    • 2005
  • The Aerial platform Truck is widely used for work in high place with the aerial platform. The most important thing is that worker's safety and worker must be able to work with trustworthiness so it needs to be verified its stiffness, deflection of boom, and dynamic condition concerned with a rollover accident. It should have an analytical exactitude because it is directly linked with the worker safety. In this point, we are trying to develop a proper CAE analysis model concerned with a rollover safety, bending stress and deflection for load. The Aerial platform Truck have a dynamic characteristics by load and moving of boom in the work field, so its static and dynamic strength analysis, structural mechanics are very important. Therefore, we evaluate the safety of each boom to calculating its stress, deflection. A computer simulation program is used widely for doing applying calculation of stiffness and structural mechanics, then finally trying to find a optimum design of the Aerial platform Truck.

  • PDF

Application of Dynamic Probabilistic Safety Assessment Approach for Accident Sequence Precursor Analysis: Case Study for Steam Generator Tube Rupture

  • Lee, Hansul;Kim, Taewan;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.306-312
    • /
    • 2017
  • The purpose of this research is to introduce the technical standard of accident sequence precursor (ASP) analysis, and to propose a case study using the dynamic-probabilistic safety assessment (D-PSA) approach. The D-PSA approach can aid in the determination of high-risk/low-frequency accident scenarios from all potential scenarios. It can also be used to investigate the dynamic interaction between the physical state and the actions of the operator in an accident situation for risk quantification. This approach lends significant potential for safety analysis. Furthermore, the D-PSA approach provides a more realistic risk assessment by minimizing assumptions used in the conventional PSA model so-called the static-PSA model, which are relatively static in comparison. We performed risk quantification of a steam generator tube rupture (SGTR) accident using the dynamic event tree (DET) methodology, which is the most widely used methodology in D-PSA. The risk quantification results of D-PSA and S-PSA are compared and evaluated. Suggestions and recommendations for using D-PSA are described in order to provide a technical perspective.

Seismic Safety Evaluation of Concrete Gravity Dams Considering Dynamic Fluid Pressure (동수압을 고려한 콘크리트 중력식 댐의 내진안전성 평가)

  • Kim, Yoog-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.120-132
    • /
    • 2006
  • Seismic safety evaluation of concrete gravity dams is very important because failure of concrete gravity dam may incur huge loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about earthquake resistance or seismic safety of existing concrete gravity darns designed before current seismic design provisions were implemented. This research develops the dynamic fluid pressure calculation using 'added mass simulation'. The actual analysis using structural analysis package was performed. According to the analysis results, the vibration which is transverse to water flow seems to be very critical depending on the shape of the dam.

Safety Assurance of Dropper Clamp in Overhead Catenary System(I) (전차선로 드롭바 클램프 안전성 확보(I))

  • Lee, Ki-Won;Cho, Yong-Hyeon;Park, Young;Min, Byung-Il;Kwon, Sam-Young;Seok, Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.223-226
    • /
    • 2007
  • In the electrical railway, for the improvement of a train speed, it is necessary to study not only the dynamic behaviors of overhead catenary system but the fatigue behaviors of components for a safety assurance according to the increase of vibration level. One of the critical components in the system is a dropper. Therefore, the dynamic force acting on a dropper was measured in the Chungbuk Line and analyzed to figure out the dynamic characteristics the dropper. And in order to assure the safety of dropper clamp and cable, we proposed a test facility as well as test method based on the test results For the further study, we will measure the dynamic forces in the conventional line and high-speed line and make up the test condition, so that the safety of dropper clamps can be assured.

  • PDF

Measurements of Dynamic Strain of Structures Using PVDF Films (PVDF 필름을 이용한 구조물의 동적 변형률 측정)

  • Kim, Su-Min;Shin, Sung-Woo;Lee, Jae-Yong;Kim, Nam-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.64-70
    • /
    • 2011
  • In this study, the applicability of PVDF films for measurements of dynamic strain in a structure was investigated. A relationship between the strain and the voltage response of a PVDF film was analytically derived. Free vibration test on a steel cantilever beam was performed and vibration response of the beam was measured both by a convential foil strain gauge and a PVDF film. Strain-voltage relationship obtained from the experiment was compared with the analytic relationship. Good agreement between the analytic and experimental relationships was observed. It was found that a tailored PVDF film can measure the dynamic strain of a structure as accurate as a conventional foil strain gauge.