• Title/Summary/Keyword: Dynamic SET-UP

Search Result 348, Processing Time 0.029 seconds

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model (시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종)

  • Park, SeungWoo;Han, SeungWoo;Kim, Linkeun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-80
    • /
    • 2021
  • Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.

Dynamic Service Composition and Development Using Heterogeneous IoT Systems

  • Ryu, Minwoo;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.91-97
    • /
    • 2017
  • IoT (Internet of Things) systems are based on heterogeneous hardware systems of different types of devices interconnected each other, ranging from miniaturized and low-power wireless sensor node to cloud servers. These IoT systems composed of heterogeneous hardware utilize data sets collected from a particular set of sensors or control designated actuators when needed using open APIs created through abstraction of devices' resources associated to service applications. However, previously existing IoT services have been usually developed based on vertical platforms, whose sharing and exchange of data is limited within each industry domain, for example, healthcare. Such problem is called 'data silo', and considered one of crucial issues to be solved for the success of establishing IoT ecosystems. Also, IoT services may need to dynamically organize their services according to the change of status of connected devices due to their mobility and dynamic network connectivity. We propose a way of dynamically composing IoT services under the concept of WoT (Web of Things) where heterogeneous devices across different industries are fully integrated into the Web. Our approach allows developers to create IoT services or mash them up in an efficient way using Web objects registered into multiple standardized horizontal IoT platforms where their resources are discoverable and accessible. A Web-based service composition tool is developed to evaluate the practical feasibility of our approach under real-world service development.

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

The impact of artificial discrete simulation of wind field on vehicle running performance

  • Wu, Mengxue;Li, Yongle;Chen, Ning
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.169-189
    • /
    • 2015
  • To investigate the effects of "sudden change" of wind fluctuations on vehicle running performance, which is caused by the artificial discrete simulation of wind field, a three-dimensional vehicle model is set up with multi-body dynamics theory and the vehicle dynamic responses in crosswind conditions are obtained in time domain. Based on Hilbert Huang Transform, the effects of simulation separations on time-frequency characteristics of wind field are discussed. In addition, the probability density distribution of "sudden change" of wind fluctuations is displayed, addressing the effects of simulation separation, mean wind speed and vehicle speed on the "sudden change" of wind fluctuations. The "sudden change" of vehicle dynamic responses, which is due to the discontinuity of wind fluctuations on moving vehicle, is also analyzed. With Principal Component Analysis, the comprehensive evaluation of vehicle running performance in crosswind conditions at different simulation separations of wind field is investigated. The results demonstrate that the artificial discrete simulation of wind field often causes "sudden change" in the wind fluctuations and the corresponding vehicle dynamic responses are noticeably affected. It provides a theoretical foundation for the choice of a suitable simulation separation of wind field in engineering application.

Thermal Management of Proton Exchange Membrane Fuel Cell (고분자막전해질 연료전지의 열관리)

  • Yu, Sang-Seok;Kim, Han-Seok;Lee, Sang-Min;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.292-300
    • /
    • 2007
  • A dynamic system model of a proton exchange membrane fuel cell(PEMFC) has been developed. The PEMFC of this study has large active area with water cooling in order to simulate the performance of the commercially viable PEMFC system for the transportation. A PEMFC stack model is a transient thermal model which is respond to the dynamic change of the coolant temperature and the flow rate. The dynamic cooling system model has been developed to determine the coolant flow rate and the coolant temperature. Prior to the system level study, thermal management criteria have been set up and brought to the control command of the cooling system. Since the system model is designed to evaluate the effect of thermal management on the system performance, it is attempted to determine the proper control algorithm of the cooling system so that the PEMFC system is working on the thermal management criteria. As a result of simulation, feedback controlled cooling system consumes less power and produce more power comparing with that of conventionally controlled cooling system.

Dynamic Characteristics Analysis of High Speed Thomson-coil Arc Eliminator Using Equivalent Electric Circuit Method with Adaptive Segmentation of conducting Plate

  • Li, Wei;Lu, Jiang;Jeong, Young-Woo;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.90-92
    • /
    • 2008
  • A novel solving technique has been developed to analyze the dynamic characteristics of high speed Thomson-coil arc eliminator. The electromagnetic repulsion actuator based on Thomson-coil is taken as the driving part of the arc eliminator, due to which, the opening and closing time is quite short compare to other type actuators. The electromagnetic repulsion actuator is composed of one repulsion plate and two fixed coils, corresponding to the opening coil and closing coil, respectively. The new solving technique is derived based on the equivalent electric circuit model of the system which is set up by dividing the repulsion plate into multi segments using adaptive segmentation method. This solving technique is applied to the dynamic characteristic analysis of electromagnetic repulsion actuators in high speed Thomson-coil arc eliminators. The calculation results are testified by the FEM calculation results and experiment results.

  • PDF

A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form. (B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬)

  • 김덕수;류중현;이현찬;신하용;장태범
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF

A study on improving valve train performance by a dynamic model analysis (동적모델 해석에 의한 밸브기구 성능개선에 관한 연구)

  • 전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.837-844
    • /
    • 1986
  • Valve motion is one of the most important factors which affect on engine noise and efficiency. Since engine valve train is characterized as a spring-mass system, its dynamic response should be analyzed for varing operation RPM range. In this paper, a OHV type valve train motion was studied by dynamic model analysis. A five degrees of freedom model was set up and simulated for different operating conditions. Also in order to varify the usefulness of the model, the valve displacement and the pushrod force were directly measured for varying RPMs and compared with the simulation results. Then sensitivity analysis was done with the five degrees of freedom model in order to suggest for valve train design change.

A Study on Optimum Cam Profile Extraction Considering Dynamic Characteristics of a Cam-Valve System (밸브 기구의 동특성을 고려한 캠 형상 설계에 관한 연구)

  • 박경조;전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 1989
  • In this work, a numerical and experimental study was done to get an optimum cam profile considering dynamic characteristics of a cam-valve system. First of all, a four degree of freedom dynamic model was set up for an OHV type cam-valve acceleration while not modifying original cam shape greatly. Also another optimization which aims to enlarge the valve displacement area while reducing the peak valve acceleration, was tried. The optimized cam profile was tested experimentally and found that the measured valve displacement and pushrod force show only very small error from the analytically predicted model simulation results.

Dynamic Characteristics of Revolution Shells (회전쉘의 동적 특성에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.123-140
    • /
    • 2014
  • This paper proposes a simple and effective method for determining the dynamic characteristics of revolution shells. This is a weighted residual method in which the collocation points are taken at the roots of orthogonal polynomial. In this paper the collocation method is employed to replace a partical differential eqations by a system of ordinary differential equations in time, and the resulting equations are solved by two different numerical methods of time integration : an implicit method and an explicit method. The proposed approach is formulated in some detail. The versatility and accuracy are illustrated through several numerical examples. The method appears to be relatively easy to set up and gives satisfactory results.