• Title/Summary/Keyword: Dynamic Process

Search Result 4,322, Processing Time 0.034 seconds

Analysis of Dynamic Characteristics and Improvement of Vibration Table for Expendable Pattern Casting Process (소실모형주조용 진동장치의 동특성 분석 및 개선)

  • 이은경;설진수;이경환;최경환;임경화
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.185-192
    • /
    • 2004
  • Vibration table is required to obtain high packing density in expendable pattern casting process. Packing density. which is an important manufacture factor, depends on the vibration pattern induced by vibration table. In general, circular vibration pattern is recognized as the best pattern. The existing vibration table is investigated to identify current vibration pattern and consider a countermeasure. Modal test is utilized to identify the dynamic characteristics of vibration table, and finite element method is used to propose the improved design. In simulation using finite element method, the position of stiffeners is obtained to satisfy the required dynamic characteristics.

Pattern Recognition of Dynamic Resistance and Real Time Quality Estimation (동저항 패턴 인식 및 실시간 품질 평가)

  • 조용준;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.303-306
    • /
    • 2000
  • Quality estimation of the weld has been one of the important issues in RSW which is a main process of the sheep metal fabrication in auto-body industry, It was well known that among the various welding process variables, dynamic resistance has a close relation with nugget formation. With this variable, it is possible to estimate the weld quality in real time. In this study, a new quality estimation algorithm is developed with the primary dynamic resistance measured at welding machine timer. For this, feature recognition method of Hopfield neural network is used. Primary resistance patterns are vectorized and classified with five patterns. The network trained by these patterns recognizes the dynamic resistance pattern and estimates the weld quality Because the process variable monitored at the primary circuit is used, it is possible to apply this system to real time application without any consideration of electrode wear or shunt effect.

  • PDF

Application of Dynamic Simulation for Efficient Filler-Loading in Papermaking System (제지 공정의 효율적인 충전제 투입에 대한 동적 시뮬레이션 적용)

  • 함충현;윤혜정
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.1-12
    • /
    • 2003
  • The complexity of the papermaking system accelerates interactions between a large number of variables involved. The process operation, therefore, is subject to frequent perturbations by disturbance. Dynamic modelling is a useful tool for characterizing the transient behavior and selecting the best control strategies to reject disturbances. In this study we developed a dynamic simulation model of a fine paper production process, which consists of stock preparation, wire sections, white water circulations, and broke system. It focused on dynamic simulation in its role for developing control strategies and studying control loop dynamics related to filler loading for ash control. The results emphasized the importance of filler-loading position and length of control loop for rapid ash control and process stabilization.

Rigorous Dynamic Simulation of PTSA Process (PTSA 공정의 상세 동적 모사)

  • Lee, Hye-Jin;Ko, Dae-Ho;Moon, Il;Choi, Dae-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.309-309
    • /
    • 2000
  • The main objective of this study is to understand the regeneration step of the PTSA(Pressure and thermal swing adsorption) process below the atmospheric pressure by rigorous dynamic simulation. This target process is to recover toluene using activated carbon as an adsorbent. To do this, the dynamic simulations for the regeneration step are performed at 360, 490, 590mmHg and at high temperature after the simulation of the adsorption step at latm and 298K. A mathematical model was developed to simulate the column dynamics of the adsorption systems. This model is based on non-equilibrium, non-isothermal and non-adiabatic conditions, and axial dispersion and heat conduction are also considered. Heat transfer resistances are considered in gas-solid, gas-column wall and column wall-outside air. The LDF(Linear Driving Force) approximation model describes the mass transfer rate between the gas and solid phase. This study shows that the recovery of toluene by PTSA is more preferable than that by general TSA.

  • PDF

A Study on Design of Linear Induction Motor in Dynamic Tester for Catenary-current Collection (주행 집전계 시험기의 주행 대차용 선형 유도전동기 설계에 관한 연구)

  • Ham, Sang-Hwan;Cho, Su-Yeon;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.771-775
    • /
    • 2011
  • This paper presents design process of linear induction motor in dynamic tester for catenary-current collection. To minimize length of rail for dynamic tester for catenary-current collection, accelerating performance of the linear induction motor is very important. So the design process of linear induction motor considered in this paper is different with general design process of linear induction motor, because dynamic tester has three type driving region, as accelerating region, constant speed region, and braking region. Considering accelerating performance of motor, distance and time from starting point to constant speed region were concerned for load condition of motor. Designed linear induction motor was analyzed by 2-dimensional finite element method. Using mechanical dynamics simulation with analysis result of 2-dimensional finite element method and accelerating performance of designed motor was proved.

Development of simulator of rolling process (압연공정 시뮬레이터의 개발)

  • 박철재;최승갑;곽재호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.620-623
    • /
    • 1996
  • POSCO has been developed a general purpose dynamic simulator of the hot strip steel mill. The simulator is a tool for developing the process control system in an industrial system solution business, by making the most use of control and simulation techniques fostered in steelmaking business. This simulator has, not only a powerful numerical analysis function, but an easy-to-use graphic user interface which readily enables to simulate dynamic system. This paper presents the features of the simulator and steel rolling process simulator as its application.

  • PDF

Applicaion of Sensitivity Formulation to Analyze the Dynamic Response due to the Excitation Force for the Undamped Vibration of Cantilever Beam (외팔보의 비감쇠 진동시 가진력에 의한 동적 반응의 민감도 정식화 및 해석)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.29-34
    • /
    • 2020
  • In this study, a sensitivity formulation was applied to analyze the dynamic response due to the effect of the excitation force for the undamped vibration of the cantilever beam. The theoretically fundamental formulations were derived considering an eigenvalue problem and its modal analysis to govern the second order algebraic differential equation in terms of the change in the modal coordinate with respect to the design parameters. A representative physical quantity pertaining to the dynamic response, that is, the rate of change in the dynamic displacement, was observed by changing the design variables, such as the cross-sectional area of the beam. The numerical results were obtained at various locations, considering the application of the external forces and observation of the dynamic displacement. When the detection position was closer to the free end of the cantilever beam, the sensitivity of the dynamic displacement was higher, as predicted through the oscillating motion of the beam. The presented findings can provide guidance to compute the dynamic sensitivity for a flexibly connected structure under dynamic excitations.

Control of pH Neutralization Process using Simulation Based Dynamic Programming (ICCAS 2003)

  • Kim, Dong-Kyu;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2617-2622
    • /
    • 2003
  • The pH neutralization process has long been taken as a representative benchmark problem of nonlinear chemical process control due to its nonlinearity and time-varying nature. For general nonlinear processes, it is difficult to control with a linear model-based control method so nonlinear controls must be considered. Among the numerous approaches suggested, the most rigorous approach is the dynamic optimization. However, as the size of the problem grows, the dynamic programming approach is suffered from the curse of dimensionality. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach was proposed by Bertsekas and Tsitsiklis (1996). The NDP approach is to utilize all the data collected to generate an approximation of optimal cost-to-go function which was used to find the optimal input movement in real time control. The approximation could be any type of function such as polynomials, neural networks and etc. In this study, an algorithm using NDP approach was applied to a pH neutralization process to investigate the feasibility of the NDP algorithm and to deepen the understanding of the basic characteristics of this algorithm. As the global approximator, the neural network which requires training and k-nearest neighbor method which requires querying instead of training are investigated. The global approximator requires optimal control strategy. If the optimal control strategy is not available, suboptimal control strategy can be used even though the laborious Bellman iterations are necessary. For pH neutralization process it is rather easy to devise an optimal control strategy. Thus, we used an optimal control strategy and did not perform the Bellman iteration. Also, the effects of constraints on control moves are studied. From the simulations, the NDP method outperforms the conventional PID control.

  • PDF

Optimum Design of Rubber Injection Molding Process for the Preparation of Anti-vibration Rubber (방진고무사출성형의 적정설계)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.490-498
    • /
    • 2010
  • The optimum mold design and the optimum process condition were constructed upon executing process simulation of rubber injection molding with the commercial CAE program of MOLDFLOW(Ver. 5.2) in order to solve the process-problems of K company relating to air-traps and short-shots. The former occurs at the cavity edge of torque-rod-bush and the latter takes place for the injection molding of dynamic dampers. As a result the process problem relating to air traps was solved by optimizing edge-angle and the number of gates to prevent the flow congestion of flow-front and to make the flow-front movement unaffected by congestion. For dynamic dampers of K company the unmolded flaw caused by their unfilled cavity was corrected by installing the air-vent at the confronting locations of both upstream and downstream of flow-front where air traps frequently occur. Besides the unmolded flaws were rectified by altering the position of gate from the upper to the middle or by increasing the number of gates. Thus the process problems of K company relating to air-traps and short-shots of torque-rod-bush and dynamic dampers, respectively, were solved by proper altering of mold design with process simulation of rubber injection molding.