
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

 1

1. INTRODUCTION

Generally, it is often inefficient to control the nonlinear

processes with linear control methods. In order to achieve
more accurate and precise control performance, the most
rigorous solution for the control of nonlinear system is to use
the optimal control strategy obtained by dynamic optimization
considering the nonlinearity of the process.

The optimal control strategy can be obtained using
standard Dynamic Programming (DP). The aim of Dynamic
Programming is to find the optimal time-varying input policies
by minimizing the objective function which is defined
according to the specific control purposes and in most cases,
the optimal strategy is calculated rather numerically than
analytically. If the size of problem is large, the calculation load
can be enormous and the solution cannot be obtained within
the given sampling time even with quite fast computer. This
problem is called as ‘Curse of Dimensionality’ and this makes
the on-line control using DP virtually impossible [1]. However,
as the Neuro-Dynamic Programming (NDP) approach is
introduced, the application of DP to nonlinear processes
becomes possible and the field of application for NDP is
growing. This approach is to perform the vast amount of
calculation offline, to learn the optimal strategy in a simple
form of approximation and to calculate the optimal strategy
using the approximator online. Cost-to-go or profit-to-go fun-
ction as a performance objective function can be approximated
by a nonlinear function or neural network (NN) and this can
reduce the calculation burden so that the dynamic
programming approach can be applied online. But the NN
requires appropriate training before use and the training of NN
is not trivial for many cases. To avoid the difficulty in NN

training, local approximation method could be used such as
k-nearest neighbor method.

In this study, Simulation-Approximation-Evolution (SAE)
algorithm suggested by Kaisare et al. [1] is investigated
against a pH neutralization process. Through the simulations,
the neural network and KNN method are compared. An
optimal control of pH neutralization process to avoid the
Bellman iteration is suggested and the effects of constraints on
input moves are investigated.

2. NEURO DYNAMIC PROGRAMMNG (NDP)

2.1 Dynamic Programming

A discrete-time dynamic system can be described by an
n-dimensional state vector x(k) and an m-dimensional input
vector u(k) at time step k. Choice of an m-dimensional control
vector u(k) determines the transition of the system from x(k)
state to x(k+1) through the following relations [2, 3],

()(1) (), ()hx k F x k u k+ = (1)
where Fh denotes the process model equation and h represents
the sampling time. A general dynamic optimization problem
for such system is to find the optimal sequence of control
vectors u(k) for k=0, …, N–1 to minimize a performance index
which is related with cost-to-go function.

Before defining the cost-to-go function, the one-stage-cost,
φ should be defined. Among many ways, the most popular
one-stage-cost can be chosen as follows, with the weighting
factors Q and R.

2 2((), ()) { [(1)] } { () }spx k u k Q x k x R u kφ = × + − + × ∆ . (2)
where k=0, …, N-1, u(0)=u0, and xsp denotes the set point.

Control of pH Neutralization Process using Simulation Based Dynamic

Programming (ICCAS 2003)

Dong Kyu Kim and Dae Ryook Yang*
* Department of Chemical and Biological Engineering, Korea University, Seoul, Korea

(Tel : +82-2-3290-3298; E-mail: dryang@korea.ac.kr)

Abstract: The pH neutralization process has long been taken as a representative benchmark problem of nonlinear
chemical process control due to its nonlinearity and time-varying nature. For general nonlinear processes, it is difficult
to control with a linear model-based control method so nonlinear controls must be considered. Among the numerous
approaches suggested, the most rigorous approach is the dynamic optimization. However, as the size of the problem
grows, the dynamic programming approach is suffered from the curse of dimensionality. In order to avoid this problem,
the Neuro-Dynamic Programming (NDP) approach was proposed by Bertsekas and Tsitsiklis (1996). The NDP
approach is to utilize all the data collected to generate an approximation of optimal cost-to-go function which was used
to find the optimal input movement in real time control. The approximation could be any type of function such as
polynomials, neural networks and etc. In this study, an algorithm using NDP approach was applied to a pH
neutralization process to investigate the feasibility of the NDP algorithm and to deepen the understanding of the basic
characteristics of this algorithm. As the global approximator, the neural network which requires training and k-nearest
neighbor method which requires querying instead of training are investigated. The global approximator requires
optimal control strategy. If the optimal control strategy is not available, suboptimal control strategy can be used even
though the laborious Bellman iterations are necessary. For pH neutralization process it is rather easy to devise an
optimal control strategy. Thus, we used an optimal control strategy and did not perform the Bellman iteration. Also, the
effects of constraints on control moves are studied. From the simulations, the NDP method outperforms the
conventional PID control.

Keywords: pH neutralization process, the NDP (Neuro-Dynamic Programming), the SAE (simulation-approximation-evolution)
algorithm , k-nearest neighbor method

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

 2

Then the optimal cost-to-go can be expressed as follow.
1

(()) min E ((), ())
N

k Nu i k
J x k x i u iφ φ

−

=

 
= + 

 
∑ (3)

where φN represents the final cost. If N is infinite, then it
becomes the infinite horizon cost-to-go function. It can be
expressed as a recursive form.

[]1(()) min E ((), ()) (((), ())k k hu
J x k x k u k J F x k u kφ += + (4)

It can be shown to satisfy the Bellman equation [2].
* *() min E ((), ()) (1)

u
J k x k u k J kφ = + +  (5)

where E[•] denotes expected value and superscript * implies
the optimal value. For simplicity, J*(x(k)) will be shortened as
J*(k). The final goal of DP is to find the input strategy u(k),
k=1, …, N-1 so that the optimal cost-to-go function J*(k)
satisfies the Bellman equation for all time-step k. The solution
can usually be obtained numerically and it suffers from the
curse of dimensionality when it involves the gridding of large
state space dimension. In order to circumvent the problem, one
approach suggested by Kaisare et. al. described in the next
section can be applied.

2.2 Simulation-Approximation-Evolution (SAE) algorithm

SAE algorithm [1] is one of the reinforcement learning
methods and it involves computation of the converged
cost-to-go approximation offline, which is described in Fig. 1.

Suboptimal
Controller Process

Training Data
x, u, φ

Set point +

-

< Simulation Part > Different I.C.

() ()N

i k
J k iφ

=
= ∑

Approximator (NN, KNN)
ApproximatorProcess Model, I.C. (1) iu x k J→ + →

Bellman Equation
1 min (,) ((,))i i

hu
J x u J F x uφ+ = +

Data
x, J

Converged ?
Cost-to-go
Function

Yes No
New Data : 1, ix J +

< Cost Approximation Part >

Bellman Iteration

More Simulation
with updated policy
for unvisited region

Figure 1. Architecture for offline computation of cost-to-go
approximation.

SAE algorithm is roughly composed of two parts. The first
part is “Simulation Part”. Simulation is performed with sub-
optimal control law to make training data set which is used for
the calculation of the infinite horizon cost-to-go function (Eq.
(5)) for each state visited during the simulation, and the
suboptimal cost-to-go function is calculated by

() ()
N

i k
J k iφ

=

= ∑ . (6)

where N is sufficiently large for the system to reach new
steady state. The second part is “Cost Approximation Part”. In
this part, the cost-to-go function approximation is performed
by fitting a neural network or other function approximator to
the data from “Simulation Part”. In addition to that, Bellman
iteration and policy update procedure is performed to improve
the approximation of the cost-to-go function [1].

2.3 Approximator

In the algorithms related to neuro-dynamic programming,

the performance of the approximator for the cost-to-go
approximation is crucial. As approximators, the global
approximator and the local approximator can be considered.
Global approximators like neural network, polynomial, and etc.
are the parametric approximators which require extensive
offline training, and the local approximators like K-nearest
neighbor, kernel-based aproximator, and etc. are
nonparametric approximators which require extensive
querying instead of offline training.

2.3.1 Neural Network

Neural networks are composed of simple computing ele-
ments in parallel. These elements are inspired by biological
nervous systems. A neural network (NN) to perform a
particular function can be trained by adjusting the weights of
the connections between elements [4] as in Figure 2. Because
the NN is one of global approximator, it is difficult to confirm
the safeguard against over estimation and the ability of
extrapolation but the rate for evaluation is fast once trained.
Furthermore, the convergence for Bellman iteration using NN
is not guaranteed. Thus, the training of NN is quite critical to
the performance of the neuro-dynamic programming
approaches.

(Optimization : w, b)

Neural Network
including Weight

(connections between
neurons) and Bias

Comparison
Input Output

Target

Adjust Weights and Bias

Figure 2. The schematic diagram for neural networks.

2.3.2 K-Nearest Neighbor method

The k-nearest neighbor (KNN) method is a very intuitive
method that classifies unlabeled examples based on their
similarity with examples in the training set. For a given
unlabeled example D

ux ∈ℜ (Dℜ is a workspace), the k
“closest” labeled examples in the training data set are found
and assigned as xu to the class that appears most frequently
within the k-subset. The KNN only requires an integer k, a set
of labeled examples (training data), and a metric to measure
closeness [6]. The KNN can conveniently handle the quite
complex nonlinearity with sufficient data set and training
effort is not needed. However, finding the neighboring data set
may require extensive data querying procedure. The
convergence for Bellman iteration can be guaranteed. But the
query time for nearest neighbor is increased in proportion to
the number of training data [5].

2.4 Bellman Iteration

Since the optimal control law is not available to begin with,
a suboptimal control policy is used for the cost-to-go
approximation and the resulting control law has to be
suboptimal. To improve the approximation, the cost or value
iteration can be performed until convergence based on the

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

 3

Bellman equation [1].
()1 min (,) (,)i i

hu
J x u J F x uφ+ = + (7)

This step may impose an enormous computational burden, but
it is performed offline.

3. pH NEUTRALIZATION PROCESS

The pH neutralization process has long been taken as a
representative benchmark problem of nonlinear chemical
process control due to its nonlinearity and time-varying nature.
In this study, the pH neutralization process is selected as the
control target system with neuro-dynamic programming
approach.

3.1 pH neutralization process
The neutralization is a chemical reaction. The control object-
tives are to drive the system to a different pH conditions
(tracking control) or to regulate the effluent pH value despite
the disturbance by manipulating the flow rate of titrating
stream (Henson and Seborg, 1994, 1997). The process is
illustrated in Fig. 3 and the operating conditions are shown in
Table 1. The reactor type of the neutralization process is a
continuous stirred tank reactor (CSTR) with baffles, which has
a volume of 2.5L. The inlet stream consists of a strong acid
stream (1q : feed solution), a weak acid stream (2q : buffer
solution) and a strong base stream (3q : titrating solution),
which are pumped to the reactor and well-mixed in CSTR. It
is assumed that the perfect mixing in tank and the complete
dissociation in solution at 25oC are reached [7]. Table 1 shows
the typical operating conditions of the process of concern.

Figure 3. The pH neutralization process.

Table 1. Operating conditions of pH neutralization process.

Symbols Values Symbols Values
V 2500 [ml]

1q 9.0 [ml/s]
1[]q 0.003 M 3HNO

55.0 10−× M 2 3H CO

2q 0.6 [ml/s] 2[]q 0.01 M 3NaHCO

3q 8.5 [ml/s] 3[]q 0.003 M NaOH
55.0 10−× M 3NaHCO

3.2 pH neutralization process model

Generally, the strong acid-base reaction is always assumed
to reach equilibrium in water solution almost instantly. This
implies the reaction rates approach infinity. So, the reaction
rate terms can be ignored in process model which can be

simplified. From this approach, Gustafsson and Waller
proposed a model using reaction invariants (1983) [7].

As the strong acid and base solutions are completely
dissociated into ions, the chemical reactions with a weak acid
solution reach equilibrium state. The chemical reactions in the
system are as follows [7].

+
2 3 3

2 +
3 3

+
2

-H CO HCO +H ,
- -HCO CO +H ,

-H O OH +H .

↔

↔

↔

 (8)

The equilibrium constants for the reactions are defined as
[7]:

+
3

1
2 3

-[HCO][H]
[H CO]aK = ,

2 +
3

2

3

-[CO][H]
-[HCO]

aK = , + -[H][OH]wK = (9)

The total amount of the reaction invariant is not affected by
the degree of chemical. According to this fact, the reaction
invariants can be derived from the stoichiometry. As
Gustafsson and Waller proposed, two kinds of reaction
invariant variables are defined in this process. The first
reaction invariant (state variable) is the concentration of
charge related ions. The other reaction invariant (another state
variable) is the total concentrations related to carbonate ions.
The relationship between pH and the reaction invariants is
given by an nonlinear equation (Gustafsson, 1992) [7].

Reaction invariants for this process are defined as:
+ 2

3 3

2
2 3 3 3

- - -[H] [OH] [HCO] 2[CO] ,
- -[H CO] [HCO] [CO] .

ai i i i i

bi i i i

W

W

= − − −

= + +
 (10)

where Wa denotes the charge related reaction invariant, Wb
denotes the carbonate ion related reaction invariant, and

1,2,3,4i = for each stream in Fig. 3.
The output equation is derived from Eqs. (9)~(10) which

represent the relation between a hydrogen ion concentration
and reaction invariants [7].

+ + 2
+1 1 2

+ + 2 +
1 1 2

/[H] 2 /[H] [H] 0
1 /[H] /[H] [H]

a a a w
b a

a a a

K K K KW W
K K K

+
+ + − =

+ +
 (11)

The pH value is the negative logarithm of the hydrogen ion
concentration (pH log H+ = −  ), so the pH value can be det-

ermined if Wa and Wb are known.
The dynamic process model for the pH neutralization

process can be derived from the component balance for the
reaction invariants [7]:

4
1 1 4 2 2 4 3 4

4
1 1 4 2 2 4 3 4

() () ()

() () ()

a
a a a a a a

b
b b b b b b

dWV q W W q W W u W W
dt

dWV q W W q W W u W W
dt

= − + − + −

= − + − + −
 (12)

In the above dynamic process model, it is assumed that the
flow rates and the concentrations of the feed and buffer
streams are known except for two properties, Wa1 and Wb2 and
they consists of unknown parameters (θ). From this
assumption, the dynamic process model, Eq. (13) can be
rearranged to the following state space model [7]:

(,) (,) ()
(,) 0

x f x t g x t u F t
c x y

θ θ= + +
=

 (13)

where

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

 4

2 2 1 1 1

1 1 2 2 2

()1(,)
()

a

b

q W x q x
f x t

q W x q xV
− − 

=  − − 
, 3 1

3 2

1(,) a

b

W x
g x t

W xV
− 

=  − 
,

1

2

01()
0
q

F t
qVθ

 
=  

 
,

1 2
T

a bW Wθ =    , 4 4
T

a bx W W=    ,

3u q= , 4=pHy , 1 1log apK K= − , 2 2log apK K= − ,
2

1 2

14
1 2

1 2 10(,) 10 10 0
1 10 10

y pK
y y

pK y y pKc x y x x
−

− −
− −

+ ×
= + − + =

+ +
.

3.3 Optimal Control Strategy

The suboptimal control law is used in the “Simulation Part”
of SAE algorithm. If the suboptimal control is close to optimal
control, the improvement of cost-to-go function by Bellman
iteration is not necessary. Fortunately, in this process, an
optimal control can be devised from a simple principle. The
required flow rate of titrating stream to make the mixture of
inlet streams with the desired pH value can be calculated from
the information of the inlet streams and the additional amount
of titrating stream to make the contents of the CSTR with the
desired pH value has to be injected in a shortest-possible time.
In this manner, the effluent pH value can be reached to the
desired value in shortest time without overshoot or undershoot.
This control law is not exactly optimal due to the residence
time of the effluent stream considering the constraints of the
flow rates but it is close enough to the optimal control law.
Moreover, the amount of additional injection of the titrating
stream can be adjusted to make the performance better. By
using this optimal strategy, the laborious Bellman iteration is
omitted in this study.

4. RESULTS AND DISCUSSIONS

The SAE algorithm is applied to the pH neutralization

process with each a global approximator (NN) and a nonpara-
metric local optimization (KNN).

4.1 Results by Neural Network Approximator

As the approximator, the multilayer feedforward NN is
used, which consists of two input state, 5 neuron hidden layer,
and 1 neuron output layer. The used weighting factors of
one-stage-cost function are 1R = , 1Q = . For training of NN,
the optimal control law mentioned in the previous section is
used to generate the training data. The comparisons of the
results between well-tuned PI control and SAE by NDP for a
step change in set point (pH 6.3 7) are shown in Fig. 4. The
SAE by NDP is much better than PI control as shown Fig. 4.

The case of multiple step changes in set point and the
disturbance case in feed concentration (Wa1 change at 10 min)
are depicted in Figures 5 and 6, respectively. From these
results, the SAE by NDP outperforms the well-tuned PI
control as expected. However, the weighting factor of the
one-stage-cost function on error has to be increased to get rid
of small steady-state offset. The small steady-state offset can
be observed in SAE case because the NN is an approximation
and the precise value cannot be calculated from the NN. To
enhance this difficulty, either more data around the steady
state should be used for training or a weighting factor
adjustment strategy has to be employed.

(a) pH change

(b) Input change

(c) State 1 (4aW) change

(d) State 2 (4bW) change

Figure 4. Comparison of results between PI control and SAE
by NDP with respect to a step change in set point (pH 6.3 7).

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

 5

Figure 5. Comparison of results between PI control and SAE
by NDP with respect to multi-step set point change.

(a) pH change

(b) Input change

Figure 6. Comparison of results between PI control and SAE
by NDP with respect to disturbance.

4.2 Results by K-Nearest Approximator

As a local approximator, KNN method is also applied. The
KNN method does not require tedious training as in NN
approach and it was very simple to apply. Since out process is
relatively simple, only two points nearest neighbor could
result a satisfactory performance. The performance using
KNN method shown in Figure 7 is almost same as the case
using NN. This is because the model we used has only two
states and the nonlinearity is not very high. If the process has
very complicated nonlinear behavior with many states, the
training of neural network is not trivial and many
computational issues regarding training and Bellman iteration
can be brought out.

4.3 Results with restriction in maxu∆

In the cases of previous study (4.1 and 4.2), the results is

acquired with no restriction in ∆umax (∆umax= umax=0.025).
But if there is the restriction in ∆umax, the SAE control strategy
cannot handle the situation correctly. To make a smooth
landing on the new set point, for example, the amount of
accumulation of input change should not exceed the required
value (additional amount of titrating stream injection).

(a) pH change

(b) Input change

(c) State 1 (4aW) change

(d) State 2 (4bW) change

Figure 7. Comparison of results between SAE by KNN and
SAE by NN with respect to set point change (pH 6.3 7).

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

 6

If it exceeds, the system will overshoot and oscillate to
compensate the over-injection of the titrating stream. However,
the standard SAE only tries to push the system to the new state
as fast as possible under given condition and not to moderate
the amount of additional injection and results overshoot and
oscillation. In order to prevent this short coming, the standard
SAE has to be modified to accommodate the situation. Thus,
we suggest that the recursive cost-to-go function calculation
should be modified in the following way.

* *
p k

k j k p
j k

J Jφ
+

+
=

= +∑ (14)

If p=1, Eq. (14) is same as Eq. (5) of original neuro-dynamic
approach and if p=∞, it becomes original dynamic
programming (DP). This modification increases computational
burden to find the optimal input at time step k, but this can
prevent the performance degradation due to the constraints on
the input change. Figure 8 shows the performance of the new
approach (∆umax=0.002) and the overshoot can be reduced
significantly in the new approach. Also, the decrease in
overshoot for the increase in p is observed.

5. CONCLUSIONS

From the simulation of a pH neutralization process, the
SAE algorithm using the global approximator (NN) or the
local approximator (KNN) outperforms the well-tuned PI
control. These results are not surprising because SAE uses
much more information and computation. However, if the
process is quite complex, this approach will achieve precise
optimal control performance without excessive online
computational burden. In this study, the new approach, SAE is
applied to a chemical process and the feasibility is investigated.
Also, a modification of neuro-dynamic programming approach
for the case of constraints in input change is suggested and the
performance is verified through the simulation.

REFERENCES

[1] Niket S. Kaisare, Jong Min Lee and Jay H. Lee,

“Simulation based strategy for nonlinear optimal
control : Application to a microbial cell reactor,” Int. J.
Robust Nonlinear Control, pp.347-363, 2003

[2] Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-
Dynamic Programming, Athena Scientific, Massachuset-
ts, 1996

[3] Arthur E. Bryson, Jr., Dynamic Optimization, Addison-
Wesley Longman, Inc., California, 1999

[4] Howard Demuth and Mark Beale, MATLAB neural
network toolbox use's guide ver 3.0, The Math Works,
1998

[5] Jay H. Lee, Lecture Note: From Model Predictive
Control to Simulation Based Dynamic Programming: A
Paradigm Shift, Georgia Institute of Technology

[6] Ricardo Gutierrez-Osuna, Lecture Note: Introduction to
Pattern Recognition, Wright state University

[7] Ahrim Yoo, “Experimental Parameter Identification and
Control of pH Neutralization Process Based on an
Extended Kalman Filter”, Master Thesis, Korea
University, 2002

[8] J. Choi, J.H. Lee, and M.J. Realff, “An algorithmic
framework for improving heuristic solutions part II: A
new version of stochastic traveling salseman problem”,
Computers and Chemical Engineering, Submitted To,
2002.

(a) pH change

(b) Input change

(c) State 1 (4aW) change

(d) State 2 (4bW) change

Figure 8. Comparison of results between multi-step forms
(p=1 and p=4) in SAE by KNN with maxu∆ restriction.

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2617
	page21: 2618
	page31: 2619
	page41: 2620
	page51: 2621
	page61: 2622

