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1. INTRODUCTION 
 
Generally, it is often inefficient to control the nonlinear 

processes with linear control methods. In order to achieve 
more accurate and precise control performance, the most 
rigorous solution for the control of nonlinear system is to use 
the optimal control strategy obtained by dynamic optimization 
considering the nonlinearity of the process.  

The optimal control strategy can be obtained using 
standard Dynamic Programming (DP). The aim of Dynamic 
Programming is to find the optimal time-varying input policies 
by minimizing the objective function which is defined 
according to the specific control purposes and in most cases, 
the optimal strategy is calculated rather numerically than 
analytically. If the size of problem is large, the calculation load 
can be enormous and the solution cannot be obtained within 
the given sampling time even with quite fast computer. This 
problem is called as ‘Curse of Dimensionality’ and this makes 
the on-line control using DP virtually impossible [1]. However, 
as the Neuro-Dynamic Programming (NDP) approach is 
introduced, the application of DP to nonlinear processes 
becomes possible and the field of application for NDP is 
growing. This approach is to perform the vast amount of 
calculation offline, to learn the optimal strategy in a simple 
form of approximation and to calculate the optimal strategy 
using the approximator online. Cost-to-go or profit-to-go fun-
ction as a performance objective function can be approximated 
by a nonlinear function or neural network (NN) and this can 
reduce the calculation burden so that the dynamic 
programming approach can be applied online. But the NN 
requires appropriate training before use and the training of NN 
is not trivial for many cases. To avoid the difficulty in NN 

training, local approximation method could be used such as 
k-nearest neighbor method. 

In this study, Simulation-Approximation-Evolution (SAE) 
algorithm suggested by Kaisare et al. [1] is investigated 
against a pH neutralization process. Through the simulations, 
the neural network and KNN method are compared. An 
optimal control of pH neutralization process to avoid the 
Bellman iteration is suggested and the effects of constraints on 
input moves are investigated. 
 

2. NEURO DYNAMIC PROGRAMMNG (NDP) 
 
2.1 Dynamic Programming 
 

A discrete-time dynamic system can be described by an 
n-dimensional state vector x(k) and an m-dimensional input 
vector u(k) at time step k. Choice of an m-dimensional control 
vector u(k) determines the transition of the system from x(k) 
state to x(k+1) through the following relations [2, 3], 

( )( 1) ( ), ( )hx k F x k u k+ =           (1) 
where Fh denotes the process model equation and h represents 
the sampling time. A general dynamic optimization problem 
for such system is to find the optimal sequence of control 
vectors u(k) for k=0, …, N–1 to minimize a performance index 
which is related with cost-to-go function. 

Before defining the cost-to-go function, the one-stage-cost, 
φ should be defined. Among many ways, the most popular 
one-stage-cost can be chosen as follows, with the weighting 
factors Q and R.  

2 2( ( ), ( )) { [ ( 1) ] } { ( ) }spx k u k Q x k x R u kφ = × + − + × ∆ .  (2) 
where k=0, …, N-1, u(0)=u0, and xsp denotes the set point. 
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Then the optimal cost-to-go can be expressed as follow. 
1

( ( )) min E ( ( ), ( ))
N

k Nu i k
J x k x i u iφ φ

−

=

 
= + 

 
∑      (3) 

where φN represents the final cost. If N is infinite, then it 
becomes the infinite horizon cost-to-go function. It can be 
expressed as a recursive form. 

[ ]1( ( )) min E ( ( ), ( )) ( ( ( ), ( ))k k hu
J x k x k u k J F x k u kφ += +  (4) 

It can be shown to satisfy the Bellman equation [2]. 
* *( ) min E ( ( ), ( )) ( 1)

u
J k x k u k J kφ = + +       (5) 

where E[•] denotes expected value and superscript * implies 
the optimal value. For simplicity, J*(x(k)) will be shortened as 
J*(k). The final goal of DP is to find the input strategy u(k), 
k=1, …, N-1 so that the optimal cost-to-go function J*(k) 
satisfies the Bellman equation for all time-step k. The solution 
can usually be obtained numerically and it suffers from the 
curse of dimensionality when it involves the gridding of large 
state space dimension. In order to circumvent the problem, one 
approach suggested by Kaisare et. al. described in the next 
section can be applied. 

 
2.2 Simulation-Approximation-Evolution (SAE) algorithm 
 

SAE algorithm [1] is one of the reinforcement learning 
methods and it involves computation of the converged 
cost-to-go approximation offline, which is described in Fig. 1.  
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Figure 1. Architecture for offline computation of cost-to-go 
approximation. 
 

SAE algorithm is roughly composed of two parts. The first 
part is “Simulation Part”. Simulation is performed with sub-
optimal control law to make training data set which is used for 
the calculation of the infinite horizon cost-to-go function (Eq. 
(5)) for each state visited during the simulation, and the 
suboptimal cost-to-go function is calculated by 

( ) ( )
N

i k
J k iφ

=

= ∑ .             (6) 

where N is sufficiently large for the system to reach new 
steady state. The second part is “Cost Approximation Part”. In 
this part, the cost-to-go function approximation is performed 
by fitting a neural network or other function approximator to 
the data from “Simulation Part”. In addition to that, Bellman 
iteration and policy update procedure is performed to improve 
the approximation of the cost-to-go function [1]. 
 
2.3 Approximator 

 
In the algorithms related to neuro-dynamic programming, 

the performance of the approximator for the cost-to-go 
approximation is crucial. As approximators, the global 
approximator and the local approximator can be considered. 
Global approximators like neural network, polynomial, and etc. 
are the parametric approximators which require extensive 
offline training, and the local approximators like K-nearest 
neighbor, kernel-based aproximator, and etc. are 
nonparametric approximators which require extensive 
querying instead of offline training. 
 
2.3.1 Neural Network 
 

Neural networks are composed of simple computing ele-
ments in parallel. These elements are inspired by biological 
nervous systems. A neural network (NN) to perform a 
particular function can be trained by adjusting the weights of 
the connections between elements [4] as in Figure 2. Because 
the NN is one of global approximator, it is difficult to confirm 
the safeguard against over estimation and the ability of 
extrapolation but the rate for evaluation is fast once trained. 
Furthermore, the convergence for Bellman iteration using NN 
is not guaranteed. Thus, the training of NN is quite critical to 
the performance of the neuro-dynamic programming 
approaches. 
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Figure 2. The schematic diagram for neural networks. 

 
2.3.2 K-Nearest Neighbor method 

The k-nearest neighbor (KNN) method is a very intuitive 
method that classifies unlabeled examples based on their 
similarity with examples in the training set. For a given 
unlabeled example D

ux ∈ℜ ( Dℜ is a workspace), the k 
“closest” labeled examples in the training data set are found 
and assigned as xu to the class that appears most frequently 
within the k-subset. The KNN only requires an integer k, a set 
of labeled examples (training data), and a metric to measure 
closeness [6]. The KNN can conveniently handle the quite 
complex nonlinearity with sufficient data set and training 
effort is not needed. However, finding the neighboring data set 
may require extensive data querying procedure. The 
convergence for Bellman iteration can be guaranteed. But the 
query time for nearest neighbor is increased in proportion to 
the number of training data [5]. 

 
2.4 Bellman Iteration 

Since the optimal control law is not available to begin with, 
a suboptimal control policy is used for the cost-to-go 
approximation and the resulting control law has to be 
suboptimal. To improve the approximation, the cost or value 
iteration can be performed until convergence based on the 
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Bellman equation [1]. 
( )1 min ( , ) ( , )i i

hu
J x u J F x uφ+ = +         (7) 

This step may impose an enormous computational burden, but 
it is performed offline. 
 

3. pH NEUTRALIZATION PROCESS 
 

The pH neutralization process has long been taken as a 
representative benchmark problem of nonlinear chemical 
process control due to its nonlinearity and time-varying nature. 
In this study, the pH neutralization process is selected as the 
control target system with neuro-dynamic programming 
approach.  
 
3.1 pH neutralization process  
The neutralization is a chemical reaction. The control object-
tives are to drive the system to a different pH conditions 
(tracking control) or to regulate the effluent pH value despite 
the disturbance by manipulating the flow rate of titrating 
stream (Henson and Seborg, 1994, 1997). The process is 
illustrated in Fig. 3 and the operating conditions are shown in 
Table 1. The reactor type of the neutralization process is a 
continuous stirred tank reactor (CSTR) with baffles, which has 
a volume of 2.5L. The inlet stream consists of a strong acid 
stream ( 1q : feed solution), a weak acid stream ( 2q : buffer 
solution) and a strong base stream ( 3q : titrating solution), 
which are pumped to the reactor and well-mixed in CSTR. It 
is assumed that the perfect mixing in tank and the complete 
dissociation in solution at 25oC are reached [7]. Table 1 shows 
the typical operating conditions of the process of concern. 
 

 
Figure 3. The pH neutralization process. 

 
Table 1. Operating conditions of pH neutralization process. 

Symbols Values Symbols Values 
V  2500 [ml] 

1q  9.0 [ml/s] 
1[ ]q  0.003 M 3HNO  

55.0 10−× M 2 3H CO  

2q  0.6 [ml/s] 2[ ]q  0.01 M 3NaHCO  

3q  8.5 [ml/s] 3[ ]q  0.003 M NaOH  
55.0 10−× M 3NaHCO  

 
3.2 pH neutralization process model  

Generally, the strong acid-base reaction is always assumed 
to reach equilibrium in water solution almost instantly. This 
implies the reaction rates approach infinity. So, the reaction 
rate terms can be ignored in process model which can be 

simplified. From this approach, Gustafsson and Waller 
proposed a model using reaction invariants (1983) [7].  

As the strong acid and base solutions are completely 
dissociated into ions, the chemical reactions with a weak acid 
solution reach equilibrium state. The chemical reactions in the 
system are as follows [7]. 

+
2 3 3

2 +
3 3

+
2

-H CO HCO +H ,
- -HCO CO +H ,

-H O OH +H .

↔

↔

↔

            (8) 

The equilibrium constants for the reactions are defined as 
[7]: 

+
3

1
2 3

-[HCO ][H ]
[H CO ]aK = ,

2 +
3

2

3

-[CO ][H ]
-[HCO ]

aK = , + -[H ][OH ]wK =  (9) 

The total amount of the reaction invariant is not affected by 
the degree of chemical. According to this fact, the reaction 
invariants can be derived from the stoichiometry. As 
Gustafsson and Waller proposed, two kinds of reaction 
invariant variables are defined in this process. The first 
reaction invariant (state variable) is the concentration of 
charge related ions. The other reaction invariant (another state 
variable) is the total concentrations related to carbonate ions. 
The relationship between pH and the reaction invariants is 
given by an nonlinear equation (Gustafsson, 1992) [7]. 

Reaction invariants for this process are defined as: 
+ 2

3 3

2
2 3 3 3

- - -[H ] [OH ] [HCO ] 2[CO ]  ,
- -[H CO ] [HCO ] [CO ]  .

ai i i i i

bi i i i

W

W

= − − −

= + +
    (10) 

where Wa denotes the charge related reaction invariant, Wb 
denotes the carbonate ion related reaction invariant, and 

1,2,3,4i =  for each stream in Fig. 3. 
The output equation is derived from Eqs. (9)~(10) which 

represent the relation between a hydrogen ion concentration 
and reaction invariants [7]. 

+ + 2
+1 1 2

+ + 2 +
1 1 2

/[H ] 2 /[H ] [H ] 0
1 /[H ] /[H ] [H ]

a a a w
b a

a a a

K K K KW W
K K K

+
+ + − =

+ +
 (11) 

The pH value is the negative logarithm of the hydrogen ion 
concentration ( pH log H+ = −   ), so the pH value can be det-

ermined if Wa and Wb are known. 
The dynamic process model for the pH neutralization 

process can be derived from the component balance for the 
reaction invariants [7]: 

4
1 1 4 2 2 4 3 4

4
1 1 4 2 2 4 3 4

( ) ( ) ( )

( ) ( ) ( )

a
a a a a a a

b
b b b b b b

dWV q W W q W W u W W
dt

dWV q W W q W W u W W
dt

= − + − + −

= − + − + −
 (12) 

In the above dynamic process model, it is assumed that the 
flow rates and the concentrations of the feed and buffer 
streams are known except for two properties, Wa1 and Wb2 and 
they consists of unknown parameters (θ). From this 
assumption, the dynamic process model, Eq. (13) can be 
rearranged to the following state space model [7]: 

( , ) ( , ) ( )
( , ) 0

x f x t g x t u F t
c x y

θ θ= + +
=

         (13) 

where 
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2 2 1 1 1

1 1 2 2 2

( )1( , )
( )

a

b

q W x q x
f x t

q W x q xV
− − 

=  − − 
, 3 1

3 2

1( , ) a

b

W x
g x t

W xV
− 

=  − 
, 

1

2

01( )
0
q

F t
qVθ

 
=  

 
,  

1 2
T

a bW Wθ =    , 4 4
T

a bx W W=    , 

3u q= , 4=pHy , 1 1log apK K= − , 2 2log apK K= − , 
2

1 2

14
1 2

1 2 10( , ) 10 10 0
1 10 10

y pK
y y

pK y y pKc x y x x
−

− −
− −

+ ×
= + − + =

+ +
. 

 
3.3 Optimal Control Strategy  

The suboptimal control law is used in the “Simulation Part” 
of SAE algorithm. If the suboptimal control is close to optimal 
control, the improvement of cost-to-go function by Bellman 
iteration is not necessary. Fortunately, in this process, an 
optimal control can be devised from a simple principle. The 
required flow rate of titrating stream to make the mixture of 
inlet streams with the desired pH value can be calculated from 
the information of the inlet streams and the additional amount 
of titrating stream to make the contents of the CSTR with the 
desired pH value has to be injected in a shortest-possible time. 
In this manner, the effluent pH value can be reached to the 
desired value in shortest time without overshoot or undershoot. 
This control law is not exactly optimal due to the residence 
time of the effluent stream considering the constraints of the 
flow rates but it is close enough to the optimal control law. 
Moreover, the amount of additional injection of the titrating 
stream can be adjusted to make the performance better. By 
using this optimal strategy, the laborious Bellman iteration is 
omitted in this study. 
 

4. RESULTS AND DISCUSSIONS 
 
The SAE algorithm is applied to the pH neutralization 

process with each a global approximator (NN) and a nonpara-
metric local optimization (KNN).  
 
4.1 Results by Neural Network Approximator 
 

As the approximator, the multilayer feedforward NN is 
used, which consists of two input state, 5 neuron hidden layer, 
and 1 neuron output layer. The used weighting factors of 
one-stage-cost function are 1R = , 1Q = . For training of NN, 
the optimal control law mentioned in the previous section is 
used to generate the training data. The comparisons of the 
results between well-tuned PI control and SAE by NDP for a 
step change in set point (pH 6.3 7) are shown in Fig. 4. The 
SAE by NDP is much better than PI control as shown Fig. 4. 
 
The case of multiple step changes in set point and the 
disturbance case in feed concentration (Wa1 change at 10 min) 
are depicted in Figures 5 and 6, respectively. From these 
results, the SAE by NDP outperforms the well-tuned PI 
control as expected. However, the weighting factor of the 
one-stage-cost function on error has to be increased to get rid 
of small steady-state offset. The small steady-state offset can 
be observed in SAE case because the NN is an approximation 
and the precise value cannot be calculated from the NN. To 
enhance this difficulty, either more data around the steady 
state should be used for training or a weighting factor 
adjustment strategy has to be employed. 
 

 
(a) pH change 

 
(b) Input change 

 
(c) State 1 ( 4aW ) change 

 
(d) State 2 ( 4bW ) change 

Figure 4. Comparison of results between PI control and SAE 
by NDP with respect to a step change in set point (pH 6.3 7). 
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Figure 5. Comparison of results between PI control and SAE 
by NDP with respect to multi-step set point change. 
 

 
(a) pH change 

 
(b) Input change 

Figure 6. Comparison of results between PI control and SAE 
by NDP with respect to disturbance. 
 
4.2 Results by K-Nearest Approximator 
 

As a local approximator, KNN method is also applied. The 
KNN method does not require tedious training as in NN 
approach and it was very simple to apply. Since out process is 
relatively simple, only two points nearest neighbor could 
result a satisfactory performance. The performance using 
KNN method shown in Figure 7 is almost same as the case 
using NN. This is because the model we used has only two 
states and the nonlinearity is not very high. If the process has 
very complicated nonlinear behavior with many states, the 
training of neural network is not trivial and many 
computational issues regarding training and Bellman iteration 
can be brought out.  

 
4.3 Results with restriction in maxu∆  

 
In the cases of previous study (4.1 and 4.2), the results is 

acquired with no restriction in  ∆umax (∆umax= umax=0.025). 
But if there is the restriction in ∆umax, the SAE control strategy 
cannot handle the situation correctly. To make a smooth 
landing on the new set point, for example, the amount of 
accumulation of input change should not exceed the required 
value (additional amount of titrating stream injection). 

 
(a) pH change 

 
(b) Input change 

 
(c) State 1 ( 4aW ) change 

 
(d) State 2 ( 4bW ) change 

Figure 7. Comparison of results between SAE by KNN and 
SAE by NN with respect to set point change (pH 6.3 7). 
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If it exceeds, the system will overshoot and oscillate to 
compensate the over-injection of the titrating stream. However, 
the standard SAE only tries to push the system to the new state 
as fast as possible under given condition and not to moderate 
the amount of additional injection and results overshoot and 
oscillation. In order to prevent this short coming, the standard 
SAE has to be modified to accommodate the situation. Thus, 
we suggest that the recursive cost-to-go function calculation 
should be modified in the following way. 

* *
p k

k j k p
j k

J Jφ
+

+
=

= +∑              (14) 

If p=1, Eq. (14) is same as Eq. (5) of original neuro-dynamic 
approach and if p=∞, it becomes original dynamic 
programming (DP). This modification increases computational 
burden to find the optimal input at time step k, but this can 
prevent the performance degradation due to the constraints on 
the input change. Figure 8 shows the performance of the new 
approach (∆umax=0.002) and the overshoot can be reduced 
significantly in the new approach. Also, the decrease in 
overshoot for the increase in p is observed. 
 

5. CONCLUSIONS 
 

From the simulation of a pH neutralization process, the 
SAE algorithm using the global approximator (NN) or the 
local approximator (KNN) outperforms the well-tuned PI 
control. These results are not surprising because SAE uses 
much more information and computation. However, if the 
process is quite complex, this approach will achieve precise 
optimal control performance without excessive online 
computational burden. In this study, the new approach, SAE is 
applied to a chemical process and the feasibility is investigated. 
Also, a modification of neuro-dynamic programming approach 
for the case of constraints in input change is suggested and the 
performance is verified through the simulation.  
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(a) pH change 

 
(b) Input change 

 
(c) State 1 ( 4aW ) change 

 
(d) State 2 ( 4bW ) change 

Figure 8. Comparison of results between multi-step forms 
(p=1 and p=4) in SAE by KNN with maxu∆ restriction. 
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