• Title/Summary/Keyword: Dynamic Pressure

Search Result 2,441, Processing Time 0.03 seconds

Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake (사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Sun-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • It is important to calculate the natural frequency of a piled structure in the design stage in order to prevent resonance-induced damage to the pile foundation and analyze the dynamic behavior of the piled structure during an earthquake. In this paper, a simple but relatively accurate method employing a mass-spring model is presented for the evaluation of the natural frequency of a pile-soil system. Greatly influencing the calculation of the natural frequency of a piled structure, the spring stiffness between a pile and soil was evaluated by using the coefficient of subgrade reaction, the p-y curve, and the subsoil elastic modulus. The resulting natural frequencies were compared with those of 1-g shaking table tests. The comparison showed that the natural frequency of the pile-soil system could be most accurately calculated by constructing a stiffness matrix with the spring stiffness of the Reese (1974) method, which utilizes the coefficient of the subgrade reaction modulus, and Yang's (2009) dynamic p-y backbone curve method. The calculated natural frequencies were within 5% error compared with those of the shaking table tests for the pile system in dry dense sand deposits and 5% to 40% error for the pile system in saturated sand deposits depending on the occurrence of excess pore water pressure in the soil.

Performance Evaluation for All-In-One Construction Method of Curbstone and Gutter Using Formwork Rail and Jig (거푸집 레일과 지그를 이용한 경계석 및 측구의 일체형 시공법에 대한 성능평가)

  • Choi, Jae-Jin;Ko, Man-Gi;Kim, Kyoung-Ju;Choi, Khyung-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.525-534
    • /
    • 2010
  • A road curbstone is a structure installed at the boundary of the sidewalk and the street with the objectives of road drainage, drawing attention and such. The current general construction method of curbstones places foundation concrete for the curbstones first, waits until the concrete reaches the strength to support the curbstones, places the curbstones on top, and then places the gutter and rear filling concrete. Such method has the issues of poor compaction and weakened bond strength of concrete due to split placing of concrete, and causes the curbstones to easily separate due to vehicle impact or earth pressure, in turn creating maintenance costs and spoiling the aesthetics. To improve such conventional construction methods, an all-in-one method was developed using formwork rail and jig where both the curbstones and gutter can be worked at the same time, and to evaluate the structural performance, static tests of lateral loading test, pullout test, and bending test were executed, and dynamic tests such as pendulum test and actual vehicle impact test were executed. In all tests, the all-in-one construction method using formwork rail and jig was shown to be superior to the conventional construction method by the increase of construction quality and bond strength of concrete.

Analgesic Effect of Grape Seed Proanthocyanidin Extract in Fibromyalgia Animal Model (섬유근통 동물 모델에서 포도씨 추출 proanthocyanidin의 진통 효과)

  • Mun, Hyun-Il;Kim, Seong-Ho;Jang, Tae-Jung;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.496-502
    • /
    • 2010
  • The acidic saline animal model of pain has been suggested to mimic fibromyalgia (FM). Oligomeric proanthocyanidin complexes (OPC) from grape seeds are known to act as an antioxidant. We studied the effects of OPC on the pain threshold in the acidic saline animal model of pain. The left gastrocnemius muscle was injected with $100\;{\mu}l$ of saline at pH 4.0 under brief isoflurane anesthesia on days 0 and 5. Control rats (n=5) received identical injections of physiological saline (pH 7.2) on the same schedule. Rats (n=10) with acidic saline injection were separated into two study subgroups. After measurement of pre-drug pain thresholds, rats were injected intraperitoneally with either saline or OPC 300 mg/kg. Paw withdrawal thresholds to pressure were again measured 60 min after intraperitoneal injection. Nociceptive thresholds were measured with a Dynamic Plantar Aesthesiometer by applying an increasing pressure to right or left hind paw until the rat withdrew the paw. Compared to baseline (day 0), acid injections produced mechanical hyper-responsiveness on day 7 (pre-drug) in these rats [p<0.05]. A potent antihyperalgesic effect was observed when rats were injected intraperitoneally with OPC 300 mg/kg [injected paw, p=0.001; contralateral paw, p=0.002]. OPC treatment decreased the expression of acid sensing ion channel 3 in the brain motor cortex area on immunohistochemical staining when OPC 300 mg/kg was administered intraperitoneally in the animal model of FM pain [p<0.05]. Further research is required to determine the efficacy of OPC treatments in FM pain in humans.

The Study on Improvement Methods for The Seismic Performance of Port Structures (항만 구조물의 내진성능 향상을 위한 배면 지반의 보강방안에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.151-165
    • /
    • 2019
  • In this study, the four types of improvement methods (increase self weight and reducing sliding force etc.) were proposed depending on install location with compaction grouting to improve seismic performance of existing port structure and optimal methods by analyzing the effects of improvement (stability, constructability and economy) by theoretical and numerical methods. From the dynamic time history analysis for artificial seismic waves, the results indicated that the horizontal displacement after improvement decreased compared to before improvement, however the displacement reduction effect among improvement methods was not significantly different. Slope stability based on the strength reduction method and the limit equilibrium analysis method, it is confirmed that the passive pile method is more safe than other methods. It is due to the shear strength at the failure surface is increased. In addition, the analysis of constructability and economy showed that the reduction of earth pressure method (type 02) and the passive pile method (type 03) are excellent. However, in the case of the passive pile method is concerned that there is a shortage of design cases and the efficiency can be reduced depend on various constraints such as ground conditions.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.

The study of CFD Modelling and numerical analysis for MSW in MBT system (생활폐기물 전처리시스템(MBT)의 동역학적 수치해석 및 모델링에 대한 연구)

  • Lee, Keon joo;Cho, Min tae;Na, Kyung Deok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.77-86
    • /
    • 2010
  • In this study, the model of the indirect wind suction waste sorting machine for characteristics of the screening of waste was studied using computational fluid dynamics and the drag coefficient for the model and the suction wind speed were obtained. The wind separator are developing by installing a cyclone air outlet to the suction blower impeller waste is selective in a way that does not pass the features and characteristics of the inlet pipe of the pressure loss and separation efficiency can have a significant impact on. Using Wind separator for selection of waste in the waste prior research on the aerodynamic properties are essential. For plastic cases, it is reasonable to take the drag coefficient between 0.8 and 1.0, and for cans, compression depending on whether the cans, the drag coefficient is in the range from 0.2 to 0.7. The separation efficiency of waste as change suction speed was the highest efficiency when the suction speed was 25~26 m/s. Shape of the inlet, depending on how the transfer pipe of the duct pressure loss occurs because the inlet velocity changes through the appropriate design standards to allow for continued research is needed.

Stemming Effect of the Crushed Granite Sand as Fine Aggregate at the Mortar Blasting Test (화강암 부순모래의 발파전색효과 연구)

  • Kim, Hak-Sung;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2011
  • In this study, for stemming effect in blast of the mortar block body, the crushed granite sand as fine aggregate, which is waste rock obtained at the ○○ limestone mine, was investigated to compare with stemming materials such as sea sand, river sand, clayed soil and water can be acquired easily at the field. The mortar block body was manufactured with the dimensions of 50 cm width, 50 cm length and 70 cm height. The direct shear and sieve separator test were performed, and the properties of friction resistance were analyzed by the extrusion test for five stemming materials. Axial strain of steel bar and ejection velocity of stemming materials due to the explosive shock pressure in blasthole with the stemming length of 10 cm and 20 cm in the mortar blast test were measured by the dynamic data acquisition system. Among stemming materials, axial strain showed the largest value at the crushed granite sand as fine aggregate, and the ejection velocity was the smallest value at the stemming of water. The results has shown correlate with harden unit weight in blasthole, particle size distribution, shear resistance, and extrusion strength of stemming materials. The ejection velocity of stemming material at the mouth of blasthole and the axial strain of steel bar in the inside of blasthole tend to be inversely proportional to each other, represent exponentially.

A Study on Improving the Tractor ROPS and Seatbelt use of Korean Farmers (농용트랙터 보호구조물 사용실태 및 좌석벨트 편이성 평가에 관한 연구)

  • Kim, Hyuck-Joo;Kim, Kwan-Woo;Choi, Sun;Kim, Jong-Sun;Kim, Yu-Yong;Kim, Jin-Oh;Kim, Hak-Kyu;Kwon, Soon-Hong
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.294-301
    • /
    • 2010
  • This study was performed to improve the utilization of the ROPS and seatbelt of tractors in Korea. We surveyed the ROPS and seatbelt use and the tractor related accidents through the personal interviews for 141 farmers. And comfort test for tractor seatbelts is done for 4 different subjects by measuring the body pressure distribution. The survey showed that 79.3% of the tractor accidents was overturning accidents. And, in case the tractor has ROPS and seatbelt, there was no serious injuries. With this results, we could confirm that ROPS and seatbelt is very effective devices for protecting drivers in overturning accidents. But, in case farmers didn't wear seatbelt, there was some fatal injuries. This shows the importance of the seatbelt use in working and driving tractors. Therefore, we tested the comfort of the tractor seatbelt for 4 different subjects operating the pedal in tractor seat simulator and in the tractor running on various roads. From the results of the static test in the Lab, it was shown that more the seatbelt anchorage point is far form SIP point, more the body pressure of the belly became higher, and more the subjects feel uncomfortable. Not only in the static test in the simulator, but also in the dynamic test in riding tractors, it was shown that non retractable seatbelt was more uncomfortable than retractable seatbelt. According to this study, we concluded that we need to promote the utilization of the ROPS and seatbelt use. And, the non retractable seatbelt need to be replaced by retractable seatbelt. Also, we recommend that the seatbelt anchorage position should to be in the seatbelt anchorage area of the ISO 3776 standard.

3D analysis of fracture zones ahead of tunnel face using seismic reflection (반사 탄성파를 이용한 터널막장 전방 파쇄대의 3차원적 예측)

  • Lee, In-Mo;Choi, Sang-Soon;Kim, Si-Tak;Kim, Chang-Ki;Jun, Jea-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.301-317
    • /
    • 2002
  • Recently, a geophysical exploration technology is frequently utilized in the civil engineering field as well as in the resource exploration. It might be important for civil engineers to understand the fundamental theory of seismic survey and limitation of the technique when utilizing these techniques in the civil engineering field. A 3-dimensional migration technique based on the principle of ellipsoid to predict the fractured zone ahead of tunnel face utilizing the tunnel seismic survey was proposed so that the geometry of the fractured zone can be estimated, i.e. the angle between tunnel axis and discontinuity zone, and the dip. Moreover, a numerical analysis technique to simulate the TSP (Tunnel Seismic Prediction) test was proposed in this paper. Based on parametric studies, the best element size, the analysis time step, and the dynamic characteristics of pressure source were suggested to guarantee the stability and accuracy of numerical solution. Example problems on a hypothetical site showed the possibility that the 3-dimensional migration technique proposed in this paper appropriately estimate the 3D-geometry of fractures ahead of tunnel face.

  • PDF

Effect of Wave-Induced Seepage on the Stability of the Rubble Mound Breakwater (동적 파랑에 의한 침투류가 사석경사식 방파구조물의 안정성에 미치는 영향)

  • Hwang, Woong-Ki;Kim, Tae-Hyung;Kim, Do-Sam;Oh, Myounghak;Park, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.13-27
    • /
    • 2018
  • To study how stable the rubble mound breakwaters are, one can look to the research of wave induced seepage flow through the pores of the rubble mound. Seepage flow is generally generated by the difference between the water level around the breakwater during a typhoon. The existing stability analysis method of the rubble mound is the static analysis which simply considers the force equilibrium taking into account the horizontal force acting on the concrete block induced by a wave (calculated by Goda equation) and the vertical force induced by the weight inclusive of the concrete block, quarry run, filter, and armor layer above the slipping plane. However, this static method does not consider the wave-induced seepage flow in the rubble mound. Such seepage may decrease the stability of the rubble mound. The stability of a rubble mound breakwater under the action of seepage was studied based on the results of CFD software (OpenFOAM) and Limit Equilibrium Method (GeoStudio). The numerical analysis result showed that the seepage flow decreased the stability of the rubble mound breakwaters. The results of the numerical analyses also revealed the stability of the rubble mound was varied with time. Especially, the most critical state happened at the condition of overtopping the concrete block, acting strong uplift pressure raising along side and underneath the concrete block, and generating high pore pressure inside rubble mound due to seepage flow. Therefore, it may be necessary to conduct a dynamic analysis considering the effect of wave-induce seepage flow together with the static analysis.