• Title/Summary/Keyword: Dynamic Precipitation

Search Result 96, Processing Time 0.022 seconds

Performance Evaluation of Small Dampers Using SMG Fluid (SMG 유체를 이용한 소형댐퍼의 성능평가)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.211-219
    • /
    • 2019
  • In this study, SMG(Smart Material with Grease) was developed, which was improved the precipitation minute particle in grease during long term standstill. Also, small-sized cylinder damper equipped with an electromagnet in a piston was developed for using a performance evaluation of the damper with SMG and the dynamic load test, and damping force using Power model and Bingham model was derived in order to compare to the result of that of the damper. The data obtained from the dynamic load test were analyzed and plotted, and then a dynamic range was calculated to evaluate the usability of the damper with SMG. The performance of the damper with SMG was compared to the damping forse derived from the Power and Bingham model. The result of this evaluation shown that the usability of SMG damper was demonstrated by this test as a semi-active controlling equipment of small-sized damper.

High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period (2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의)

  • Song, Jiae;Lee, Seung-Jae;Kang, Minseok;Moon, Minkyu;Lee, Jung-Hoon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.384-398
    • /
    • 2015
  • In this paper, the high-resolution Weather Research and Forecasting/Noah-MultiParameterization (WRF/Noah-MP) modeling system is configured for the Cheongmicheon Farmland site in Korea (CFK), and its performance in land and atmospheric simulation is evaluated using the observed data at CFK during the 2014 special observation period (21 August-10 September). In order to explore the usefulness of turning on Noah-MP dynamic vegetation in midterm simulations of surface and atmospheric variables, two numerical experiments are conducted without dynamic vegetation and with dynamic vegetation (referred to as CTL and DVG experiments, respectively). The main results are as following. 1) CTL showed a tendency of overestimating daytime net shortwave radiation, thereby surface heat fluxes and Bowen ratio. The CTL experiment showed reasonable magnitudes and timing of air temperature at 2 m and 10 m; especially the small error in simulating minimum air temperature showed high potential for predicting frost and leaf wetness duration. The CTL experiment overestimated 10-m wind and precipitation, but the beginning and ending time of precipitation were well captured. 2) When the dynamic vegetation was turned on, the WRF/Noah-MP system showed more realistic values of leaf area index (LAI), net shortwave radiation, surface heat fluxes, Bowen ratio, air temperature, wind and precipitation. The DVG experiment, where LAI is a prognostic variable, produced larger LAI than CTL, and the larger LAI showed better agreement with the observed. The simulated Bowen ratio got closer to the observed ratio, indicating reasonable surface energy partition. The DVG experiment showed patterns similar to CTL, with differences for maximum air temperature. Both experiments showed faster rising of 10-m air temperature during the morning growth hours, presumably due to the rapid growth of daytime mixed layers in the Yonsei University (YSU) boundary layer scheme. The DVG experiment decreased errors in simulating 10-m wind and precipitation. 3) As horizontal resolution increases, the models did not show practical improvement in simulation performance for surface fluxes, air temperature, wind and precipitation, and required three-dimensional observation for more agricultural land spots as well as consistency in model topography and land cover data.

Effect of Restraint Stress on the Precipitation Behavior and Thermal Fatigue Properties of Simulated Weld Heat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강 재현 용접 열 영향부의 석출거동 및 열피로 특성에 미치는 구속응력의 영향)

  • Han, Kyutae;Kang, Yongjoon;Lee, Sangchul;Hong, Seunggab;Jeong, Hongchul;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.6-12
    • /
    • 2015
  • Thermal fatigue life of the automobile exhaust manifold is directly affected by the restraint force according to the structure of exhaust system and bead shape of the welded joints. In the present study, the microstructural changes and precipitation behavior during thermal fatigue cycle of the 18wt% Cr ferritic stainless steel weld heat affected zone (HAZ) considering restraint stress were investigated. The simulation of weld HAZ and thermal fatigue test were carried out using a metal thermal cycle simulator under complete constraint force in the static jig. The change of the restraint stress on the weld HAZ was simulated by changing the shape of notch in the specimen considering the stress concentration factor. Thermal fatigue properties of the weld HAZ were deteriorated during cyclic heating and cooling in the temperature range of $200^{\circ}C$ to $900^{\circ}C$ due to the decrease of Nb content in solid solution and coarsening of MX type precipitates, laves phase, $M_6C$ with coarsening of grain and softening of the matrix. As the restraint stress on the specimen increased, the thermal fatigue life was decreased by dynamic precipitation and rapid coarsening of the precipitates.

Numerical Studies of Cloud Acidification Processes Using a One Dimensional Cumulus Cloud Model (일차원 적운모델을 이용한 산성강우 형성에 관한 수치적 연구)

  • 곽노혁;안상욱;홍민선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.145-149
    • /
    • 1991
  • A one dimensiional cumulus cloud model has been developed for the investigation of temporal and altitudinal variation of trace gases and the wet deposition rates of sulfate for different simulation conditions. The results show that the dynamic field, liquid mixing ratios and the solubility of trace gases affect the distribution of trace gases and the droplet pH. Temporal variation of the predicted surface precipitation and sulfate deposition rates agree well with the field data.

  • PDF

Fragmented Urban Heat Islands in Seoul, Korea (분절화된 서울의 도시 열섬 현상)

  • Park, Gwangyong;Kwon, Won-Tae;David A. Robinson
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.48-48
    • /
    • 2004
  • A fragmented urban heat island is observed over the Seoul metropolitan area. Long-term (1996-2003) hourly temperature, wind speed and direction, and precipitation data observed at 26 (51) automatic weather stations (AWS) in Seoul (Gyeonggi prevince) makes it possible to reveal more dynamic spatial and temporal patterns of the urban heat island in this area than previously revealed. (omitted)

  • PDF

Climate Change and Groundwater Sustainability in Korea for Next Decade (기후변화와 국내 지하수자원의 지속가능성 - 다음 10년을 위해서)

  • Woo, Nam C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Global climate changes affect the local hydrologic cycle, and subsequently, require changes in water resource management strategies of Korea. Variations in precipitation and urbanization have adverse effects on the reasonable and efficient utilization of groundwater resources. Groundwater management strategies of Korea have been implemented based on the evaluation of "sustainable yield", which is calculated from the amount of annual recharge. However, this sustainable yield has no consideration of natural discharge and dynamic equilibrium of the groundwater system. Therefore, for the effective groundwater management strategies of the following decades, we need representative and reliable observations, and have to develop methods for the systematic analysis and interpretations of the data to draw valid information in linkage of natural and societal environmental changes.

Probabilistic Solution to Stochastic Soil Water Balance Equation using Cumulant Expansion Theory (Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • Based on the study of soil water dynamics, this study is to suggest an advanced stochastic soil water model for future study for drought application. One distinguishable remark of this study is the derivation of soil water dynamic controling equation for 3-stage loss functions in order to understand the temporal behaviour of soil water with reaction to the precipitation. In terms of modeling, a model with rather simpler structure can be applied to regenerate the key characteristics of soil water behavior, and especially the probabilistic solution of the derived soil water dynamic equation can be helpful to provide better and clearer understanding of soil water behavior. Moreover, this study will be the future cornerstone of applying to more realistic phenomenon such as drought management.

Softening-hardening Mechanisms in the Direct Hot-extrusion of Aluminium Compacts

  • Zubizarreta, C.;Arribas, I.;Gimenez, S.;Iturriza, I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.718-719
    • /
    • 2006
  • Two different commercial aluminium powder grades have been densified by direct hot extrusion. The extrusion temperature was $425^{\circ}C$, with an extrusion ratio of 1:16. Prior to extrusion, some green compacts were pre-sintered ($500^{\circ}C$). The evolution of the extrusion load during the process and the hardness of the final products have been investigated. Additionally, microstructural characterization by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD) was carried out. The obtained results evidence grain refinement. Additionally, inter-metallic precipitation, dynamic recovery and geometric dynamic recrystallization take place depending on some process variables, powder composition, heat treatment, strain $\ldots$

  • PDF

Work Softening Behavior of Zn-15%Al alloy (Zn-15%Al 합금의 가공연화 거동)

  • Jun, Joong-Hwan;Seong, Ki-Duk;Kim, Jeong-Min;Kim, Ki-Tae;Jung, Woon-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • Effect of cold rolling on microstructural changes has been investigated for a Zn-15%Al alloy to elucidate the reason for its work softening behavior. Fully annealed microstructure of the Zn-15%Al alloy is characterized by ${\eta}$ grains and (${\eta}+{\alpha}$) lamellar colonies, where ${\eta}$ and ${\alpha}$ are Zn-rich HCP and Al-rich FCC phases, respectively. The hardness decreases continuously with increasing cold rolling degree, exhibiting work softening behavior. It is revealed that during the cold rolling, (${\eta}+{\alpha}$) lamellar colonies gradually change into equiaxed ${\eta}$ and ${\alpha}$ grains due to dynamic recrystallization at room temperature, while pre-existing ${\eta}$ grains are only deformed without recrystallization. Furthermore, cold rolling causes the precipitation of dissolved Al solutes in ${\eta}$ grains. In view of these results, change of (${\eta}+{\alpha}$) phases from lamellar to equiaxed morphology, which results in structural softness and increase in equiaxed ${\eta}/{\alpha}$ grain boundaries with higher mobility, and deterioration of solution hardening by precipitation of Al solutes from ${\eta}$ grains, are thought to contribute to the work softening of Zn-15%Al alloy.

Chaotic Analysis of Water Balance Equation (물수지 방정식의 카오스적 분석)

  • 이재수
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 1994
  • Basic theory of fractal dimension is introduced and performed for the generated time series using the water balance model. The water balance equation over a large area is analyzed at seasonal time scales. In the generation and modification of mesoscale circulation local recycling of precipitation and dynamic effects of soil moisture are explicitly included. Time delay is incorporated in the analysis. Depending on the parameter values, the system showed different senarios in the evolution such as fixed point, limit cycle, and chaotic types of behavior. The stochastic behavior of the generated time series is due to deterministic chaos which arises from a nonlinear dynamic system with a limited number of equations whose trajectories are highly sensitive to initial conditions. The presence of noise arose from the characterization of the incoming precipitation, destroys the organized structure of the attractor. The existence of the attractor although noise is present is very important to the short-term prediction of the evolution. The implications of this nonlinear dynamics are important for the interpretation and modeling of hydrologic records and phenomena.

  • PDF