• Title/Summary/Keyword: Dynamic Operation Test

Search Result 307, Processing Time 0.024 seconds

Dynamic Behavior of a Modified Thermally Coupled Distillation Column (변형 열복합 증류탑의 동적 특성)

  • Hwang, Kyu Suk;Sung, Ick Gi;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.327-331
    • /
    • 2009
  • A thermally coupled distillation system is constructed using two columns used in a conventional two column system, and its operability is examined by investigating the dynamic behavior. For the control of three product specifications, the step response test is performed and a $3{\times}3$ control structure using flow rates of overhead and side products and vapor boilup is suggested. The performance of the proposed control system indicates that the specification control of bottom product is the most difficult but the operation of the proposed system is available.

Dynamic Characteristics of a Hydraulic Fishing Winch Simulator (유압식 어로 윈치 시뮬레이터의 동적 거동 특성)

  • LEE Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2004
  • To meet the increasing demand from various fishing fields for training of fishing equipment operators, a fishing winch simulator was designed to train maritime students in the correct and safe operation of hydraulic winches under various load conditions related to fishing operations. The aim of this study is to describe the basic dynamic characteristics of the newly developed hydraulic fishing winch simulator and particularly to analyze the mechanical responses produced on the winch operation controls. The winch simulator consists of two winch units, a computer control and data acquisition system, a control consol and other associated mechanisms. When one winch is in hauling mode, the other one will always be in loading mode. The revolution speed of the hauling winch was controlled by a proportional directional control valve, and the braking torque of the loading winch was controlled by a proportional pressure control valve. The simulation experiments indicated that the dynamic characteristics of the hauling winch followed the braking response characteristics of the loading winch. The tests also showed that the warp speed and tension linearly depend on the pressure differential across the motor of the loading winch controlled by operating the proportional pressure control valve during the hauling operation. The experience gained from various training courses showed that the fishing winch simulator was very realistic and it was valuable for training novice winch operators. The results of the winch simulation exercise were recorded and used to evaluate the training on the operation and handling of the winch system. From these test results, we concluded that the tension acting on the warp during hauling operations can successfully be simulated by controlling the pressure differential across the motor with step changes of the control input signal to the proportional pressure control valve of the loading winch.

The Allocation of Inspection Efforts Using a Knowledge Based System

  • Kang, Kyong-sik;Stylianides, Christodoulos;La, Seung-houn
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.18-24
    • /
    • 1990
  • The location of inspection stations is a significant component of production systems. In this paper, a prototype expert system is designed for deciding the optimal location of inspection stations. The production system is defined as a single channel of n serial operation stations. The potential inspection station can be located after any of the operation stations. Nonconforming units are generated from a compound binomial distribution with known parameters at any given operation station. Traditionally Dynamic programming, Zero-one integer programming, or Non-linear programming techniques are used to solve this problem. However a problem with these techniques is that the computation time becomes prohibitively large when t be number of potential inspection stations are fifteen or more. An expert system has the potential to solve this problem using a rule-based system to determine the near optimal location of inspection stations. This prototype expert system is divided into a static database, a dynamic database and a knowledge base. Based on defined production systems, the sophisticated rules are generated by the simulator as a part of the knowledge base. A generate-and-test inference mechanism is utilized to search the solution space by applying appropriate symbolic and quantitative rules based on input data. The goal of the system is to determine the location of inspection stations while minimizing total cost.

  • PDF

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.

Control of a Magnetic Suspension System with Inductive Sensors for a High Vacuum Turbomolecular Pump (Inductive Sensor를 이용한 고진공 분자펌프용 자기부상계의 제어)

  • 노승국;박병철;정민경;노명규;박종권;경진호;구본학
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • In this paper, a magnetic suspension system with inductive sensors fur a high vacuum turbomolecular pump(TMP) is discussed. The performance of designed inductive position sensor is evaluated by static and dynamic test, and the test results show sensitivity of about 6,000 V/m and dynamic bandwidth of 750 ㎐. The protype of magnetic suspension system is designed and constructed with 5-axis magnetic bearing, inductive sensor and BLDC internal motor. With DSP based digital PID control system, the prototype is examined its high damping ratio and stable operation up to 20,000 rpm of rotation.

  • PDF

Dynamic Model Identification of Quadrotor UAV based on Frequency-Domain Approach (주파수 영역 기반 쿼드로터 무인기 운동 모델 식별)

  • Jung, Sunggoo;Kim, Sung-Yug;Jung, Yeundeuk;Kim, Eung-Tai
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.22-29
    • /
    • 2015
  • Quadrotor is widely used in variable application nowadays. Due to its inherent unstable characteristics, control system to augment the stability is essential for quadrotor operation. To design control system and verify its performance through simulation, accurate dynamic model is required. Quadrotor dynamic model is simply compared with conventional rotorcraft such as helicopter. However, the accurate dynamic model of quadrotor is not easy to develop because of the highly correlated aerodynamic effect of each rotor. In this paper, quadrotor dynamic model is identified from the flight data using frequency domain approach. Flight test of quadrotor is performed in closed loop configuration with stability augmentation system included. Frequency sweep input is applied in each of lateral, longitudinal, yaw and heave axis separately. The bare dynamic model is identified from the flight data of quadrotor responses and thrust measurement through Pulse Width Modulation(PWM) data. The frequency responses of identified model match well with those of flight data, and time responses of identified model for doublet input in each axis are also shown to agree with flight data.

A Study for Durability Test of Dynamic Power Cable under Marine Operating Environment Condition (동적 파워 케이블의 해양운용환경 내구성 검증시험에 관한 연구)

  • Shim, Chunsik;Kim, Chulmin;Rho, Yuho;Lee, Jaebok;Chae, Kwangsu;Song, Hacheol;Kim, Hokyeong;Bae, Chulmin;Wi, Sungkuk;Im, Kichen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.49-57
    • /
    • 2021
  • In the production power transmitting of a floating production system like a wind offshore floating, the power cable should be connected from the surface system into the subsea system. The connection between the surface and the subsea system will make the power cable get a dynamic load like current and wave forces. Based on this condition, a dynamic power cable is required to endure external physical force and vibration in the long-term condition. It needs more requirements than static power cable for mechanical fatigue properties to prevent failures during operations in marine environments where the external and internal loads work continuously. As a process to verify, the durability test of dynamic power cables under the marine operation environment condition was carried out by using domestic technology development.

A Study on the Fault Detection of ASIC using Dynamic Pattern Method (Dynamic Pattern 기법을 이용한 주문형 반도체 결함 검출에 관한 연구)

  • Shim, Woo-Che;Jung, Hae-Sung;Kang, Chang-Hun;Jie, Min-Seok;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.560-567
    • /
    • 2013
  • In this paper, it is proposed the fault detection method of the ASIC, without the Test Requirement Document(TRD), extracting internal logic circuit and analyzed the function of the ASIC using the multipurpose development program and simulation. If there don't have the TRD, it is impossible to analyze the operation of the circuit and find out the fault detection in any chip. Therefore, we make the TRD based on the analyzed logic data of the ASIC, and diagnose of the ASIC circuit at the gate level through the signal control of I/O pins using the Dynamic Pattern signal. According to the experimental results of the proposed method, we is confirmed the good performance of the fault detection capabilities which applied to the non-memory circuit.

Development of a Dynamic Model for Double-Effect LiBr-$H_2O$ Absorption Chillers and Comparison with Experimental Data. (이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교)

  • Shin, Young-gi;Seo, Jung-A;Cho, Hyun-Wook;Nam, Sang-Chul;Jeong, Jin-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.109-114
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

  • PDF

Development of a Dynamic Model for Double-Effect LiBr-$H_{2}O$ Absorption Chillers and Comparison with Experimental Data (이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교)

  • Shin, Young-Gy;Seo, Jung-A;Cho, Hyun-Wook;Nam, Sang-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.781-788
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.