• 제목/요약/키워드: Dynamic Measuring

검색결과 778건 처리시간 0.03초

폴리머 콘크리트를 이용한 엘리베이터 기인 구조 진동저감 성능 연구 (Study on Elevator Induced Structural Vibration Reduction Performance Using Polymer Concrete)

  • 염지혜;김정진;박준홍
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권6호
    • /
    • pp.90-94
    • /
    • 2021
  • 주거지에서의 정숙함에 대한 관심이 높아짐에 따라 구조물에서 발생하는 소음을 최소화할 필요가 있다. 중요한 소음원 중 하나는 엘리베이터 작동 소음이다. 엘리베이터는 층 사이에서 작동하며 인근 생활 공간에 상당히 성가신 소리를 생성한다. 입주민들에게 성가심을 유발하는 주요 소음원으로 인식되고 있다. 엘리베이터는 층간 이동을 위해 여러 위치에서 건물 구조에 지지되어 있다. 본 연구에서는 지지 위치에 폴리머 콘크리트를 사용하여 진동을 감소시키는 것을 실증하였다. 시멘트 콘크리트와 폴리머 콘크리트에 지지했을 때의 진동 발생량을 측정 및 비교하여 소음 저감 성능을 평가하였다. 폴리머 콘크리트는 승강로를 모방한 벽에 삽입되는 형태로 제작되었다. 브라켓에 충격진동을 인가하고 진동전달크기를 측정하였다. 감쇠비는 과도응답의 정규화 및 곡선맞춤을 통해 평가하였고, 각 레진 혼합 질량비에 대하여 비교하였다. 폴리머 콘크리트를 사용하여 구조적 강성에 대한 손실 없이 효과적인 방식으로 진동 발생을 감소시킬 수 있다.

무아레를 이용한 융합 보안토큰생성과 전파공격 보호 기법 (A Scheme of Improving Propagation Attack Protection and Generating Convergence Security Token using Moire)

  • 이수연;이근호
    • 한국융합학회논문지
    • /
    • 제10권2호
    • /
    • pp.7-11
    • /
    • 2019
  • 급격한 전파를 이용하는 기기의 다양화와 대중화로 인해 많은 전파 관련 보안 문제들이 일어나고 있다. 일상적인 생활에서의 전파의 안전은 매우 밀접한데 전파의 방해와 교란은 단순 생활의 불편뿐 아니라 신체의 직접적인 피해를 입힐 수도 있기 때문에 전파보호는 매우 중요한 과제이다. 본 논문에서는 전파 교란과 교섭을 막기 위한 방안으로 백색광 광원, 투영격자와 광원으로 영사식 무아레를 측정 하여 기준격자 및 변형격자의 영사 이미지를 획득한 후 위상도를 알고리즘에 적용하여 화상처리 알고리즘으로 무아레 무늬를 생성하고 무늬 위상도를 3차원 형상도로 생성한다. 이렇게 측정된 얼굴 형상을 이용한 암호화된 토큰을 만들어 토큰링을 통한 정보의 수신여부를 결정 하여 인증 강도, 호출자의 정보 등이 포함된 동적 보안 속성을 가진 수평 전파를 전송하고 java직렬화와 직렬화 해제 기능을 이용하여 토큰의 고유성을 확인 수평전파를 송 수신 하여 문제점을 해결하는 기법을 제안하였다.

뇌졸중 환자의 지팡이 높이에 따른 보행과 균형에 미치는 영향 (The Effect of Cane Height on Walking and Balance for Stroke Patients)

  • 서태화;두영택;정대인
    • 농촌의학ㆍ지역보건
    • /
    • 제43권4호
    • /
    • pp.250-257
    • /
    • 2018
  • 본 연구는 성인 뇌졸중 환자의 보행기능을 향상시키기 위해 사용되고 있는 보행보조기의 가장 이상적인 길이를 제시함으로써 뇌졸중 환자만을 위한 전문화된 맞춤형 보행보조기 길이의 사용을 독려하기 위하여 실시하게 되었다. 그 결과, 지팡이 높이에 따른 성인 뇌졸중 환자의 보행균형, 보행분석에서 보행의 속도 증가를 위해서 몸통 굴곡을 통한 무게 중심이 아래쪽에 위치하고, 하지근육의 활성도 증가를 위해서 몸통 신전을 통한 무게 중심이 위쪽으로 이동하여 척추 기립근의 수축으로 뇌졸중 환자의 지팡이 높이에 따른 균형과 보행 변화의 근거를 제시한다.

BF인증을 위한 바닥 마감재 미끄럼 성능기준 및 측정방법에 대한 연구 (A Study on Floor Slip Resistance Standard and Test Method for BF Certification)

  • 신동홍;성기창;박광재
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제25권3호
    • /
    • pp.75-83
    • /
    • 2019
  • Purpose: There are no clear criteria for slip performance in the BF certification process, so the evaluator relies on subjective judgments depending on the field situation. Physical criteria for determining the slip performance of various floor finishes are not clear. C.S.R., the only criterion currently being used to check slip performance, may raise questions about its coverage, feasibility and reliability. Method: For an analysis of domestic standards and status, KS L 1001, KS M 3510, and KS F 2375. External standards are analyzed for ADA Standard, ANSI Standard, and BS EN Standard. Analyze the test methods and evaluation criteria of O-Y-PSM, BPT, and the dynamic slip resistance test used in these criteria. It also presents an improvement plan for the rational presentation of standards. Results: To date, various kinds of test methods and measuring devices of the slip resistance coefficient have been developed, but there are not many ways to trust useful results related to user safety. Reliability and thoroughly verified test methods and criteria should be used to assess the slip performance of the floor. In order to improve the standard for the evaluation of slip performance in Korea, the existing standard should first be raised to the same level as the overseas standard, and the application of the discriminatory standard should be applied considering the characteristics and usage patterns of each space. Implication: Currently, Korean standards propose various test methods, but the proper use of test methods, scope and assessment criteria are not established, so improvement of the comprehensive standard is necessary.

다중 이벤트 센서 기반 스마트 홈에서 사람 행동 분류를 위한 효율적 의사결정평면 생성기법 (Efficient Hyperplane Generation Techniques for Human Activity Classification in Multiple-Event Sensors Based Smart Home)

  • 장준서;김보국;문창일;이도현;곽준호;박대진;정유수
    • 대한임베디드공학회논문지
    • /
    • 제14권5호
    • /
    • pp.277-286
    • /
    • 2019
  • In this paper, we propose an efficient hyperplane generation technique to classify human activity from combination of events and sequence information obtained from multiple-event sensors. By generating hyperplane efficiently, our machine learning algorithm classify with less memory and run time than the LSVM (Linear Support Vector Machine) for embedded system. Because the fact that light weight and high speed algorithm is one of the most critical issue in the IoT, the study can be applied to smart home to predict human activity and provide related services. Our approach is based on reducing numbers of hyperplanes and utilizing robust string comparing algorithm. The proposed method results in reduction of memory consumption compared to the conventional ML (Machine Learning) algorithms; 252 times to LSVM and 34,033 times to LSTM (Long Short-Term Memory), although accuracy is decreased slightly. Thus our method showed outstanding performance on accuracy per hyperplane; 240 times to LSVM and 30,520 times to LSTM. The binarized image is then divided into groups, where each groups are converted to binary number, in order to reduce the number of comparison done in runtime process. The binary numbers are then converted to string. The test data is evaluated by converting to string and measuring similarity between hyperplanes using Levenshtein algorithm, which is a robust dynamic string comparing algorithm. This technique reduces runtime and enables the proposed algorithm to become 27% faster than LSVM, and 90% faster than LSTM.

The investigation of a new fast timing system based on DRS4 waveform sampling system

  • Zhang, Xiuling;Du, Chengming;Chen, Jinda;Yang, Herun;kong, Jie;Yang, Haibo;Ma, Peng;Shi, Guozhu;Duan, limin;Hu, Zhengguo
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.432-438
    • /
    • 2019
  • In the study of nuclear structure, the fast timing technique can be used to measure the lifetime of excited states. In the paper, we have developed a new fast timing system, which is made up of two $LaBr_3:Ce$ detectors and a set of waveform sampling system. The sampling system based on domino ring sampler version 4 chip (DRS4) can digitize and store the waveform information of detector signal, with a smaller volume and higher timing accuracy, and the waveform data are performed by means of digital waveform analysis methods. The coincidence time resolution of the fast timing system for two annihilation 511 keV ${\gamma}$ photon is 200ps (FWHM), the energy resolution is 3.5%@511 keV, and the energy linear response in the large dynamic range is perfect. Meanwhile, to verify the fast timing performance of the system, the $^{152}Gd-2_1^+$ state form ${\beta}^+$ decay of $^{152}Eu$ source is measured. The measured lifetime is $45.3({\pm}5.0)ps$, very close to the value of the National Nuclear Data Center (NNDC: $46.2({\pm}3.9)ps$). The experimental results indicate that the fast timing system is capable of measuring the lifetime of dozens of ps. Therefore, the system can be widely used in the research of the fast timing technology.

The Effects of Balance Training with Functional Electrical Stimulation on Balance and Gait in patients with chronic stroke

  • Kim, Eunji;Min, Kayoon;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권1호
    • /
    • pp.55-63
    • /
    • 2021
  • Objective: The purpose of this study was to examine the effects of balance training with Functional Electrical Stimulation (FES) on balance and gait in patients with chronic stroke. Design: A cross over design Methods: Nine patients with stroke were recruited into this study. They were measuring their balance ability and gait ability. The intervention "A" included 4 weeks of balance training with Functional Electrical Stimulation (FES) for 40 m/d, 3 d/wk. Intervention "B" included 4 weeks of balance training with placebo Functional Electrical Stimulation (FES) for 40 m/d, 3 d/wk. Of the 9 patients who completed the study, 5 were randomly assigned to" group A-B", and 4 to group B-A. The crossover occurred after 4 weeks. Results: Following are the specific results of balance training with Functional Electrical Stimulation (FES) on patients with chronic stroke. First, patients who received treatment A showed improvement compared with patients who received treatment B in static balance. There were significant decreases in anterioposterior, mediolateral postural sway extension and velocity moment (p<0.05) with their eyes opened and closed conditions. Second, they had significantly improved in dynamic balance (p<0.05). Lastly, there were also improvement in their gait velocity and cadence (p<0.05). Conclusions: These findings suggest that, the Functional Electrical Stimulation (FES) combined with balance training more effectively improves the balance and gait ability, I'm convinced that it could be actively used in clinics added to the conventional physical therapy in the future.

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Proposal for a Sensory Integration Self-system based on an Artificial Intelligence Speaker for Children with Developmental Disabilities: Pilot Study

  • YeJin Wee;OnSeok Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1216-1233
    • /
    • 2023
  • Conventional occupational therapy (OT) is conducted under the observation of an occupational therapist, and there are limitations in measuring and analyzing details such as degree of hand tremor and movement tendency, so this important information may be lost. It is therefore difficult to identify quantitative performance indicators, and the presence of observers during performance sometimes makes the subjects feel that they have to achieve good results. In this study, by using the Unity3D and artificial intelligence (AI) speaker, we propose a system that allows the subjects to steadily use it by themselves and helps the occupational therapist objectively evaluate through quantitative data. This system is based on the OT of the sensory integration approach. And the purpose of this system is to improve children's activities of daily living by providing various feedback to induce sensory integration, which allows them to develop the ability to effectively use their bodies. A dynamic OT cognitive assessment tool for children used in clinical practice was implemented in Unity3D to create an OT environment of virtual space. The Leap Motion Controller allows users to track and record hand motion data in real time. Occupational therapists can control the user's performance environment remotely by connecting Unity3D and AI speaker. The experiment with the conventional OT tool and the system we proposed was conducted. As a result, it was found that when the system was performed without an observer, users can perform spontaneously and several times feeling ease and active mind.