• 제목/요약/키워드: Dynamic Measurement

검색결과 1,882건 처리시간 0.029초

Measurement of Dynamic Contact Angle of Yarn for Evaluation of Fabric Comfort Performance

  • Hong, Cheol-Jae
    • 감성과학
    • /
    • 제5권3호
    • /
    • pp.67-74
    • /
    • 2002
  • Testing device was newly designed and built to measure the dynamic contact angle. The measurement was made using microscope interfaced with computerized image analysis system while the dynamic condition being controled using Instron. As specimens for the experiment, two different types of fibers, i.e., hydrophilic and hydrophobic, were prepared. In case of hydrophilic fiber, the increase of twist level gave the increase of contact angle. However, in hydrophobic yarn the increase of twist level gave the decrease of contact angle. When saline was used as a telling liquid, the increase of the concentration gave the increase of contact angle. The results rationalized clearly on the basis of known concepts could be used in designing fabric structure for the improvement of comport performance.

  • PDF

자기위치 유지시스템 제어기의 설계변수에 관한 연구 (A Study on the Design Parameters of Controller for Dynamic Positioning System)

  • 이동연;하문근
    • 대한조선학회논문집
    • /
    • 제40권1호
    • /
    • pp.8-19
    • /
    • 2003
  • Special purpose vessels such as drillship and ocean research vessels install the DPS(Dynamic Positioning System) to maintain the position and heading for long-time operation. This paper deals with the design parameters for the control theory and filter algorithms of DP system. for the environmental loadings wind forces, current forces and wave forces were considered. In order to estimate the low frequency motions without first-order wave motion, the Kalman filter was used and it was assumed that the first-order wave forces correspond to system noises and first-order wave motions are measurement noises. In this simulation, the length of research vessel is 65 meters and it has four thrusters to maintain the position. The ability of keeping position and heading was confirmed. For the calculation of thruster input the LQR and LOI control theory were adopted and the effects of gain were investigated.

Robustness of 2nd-order Iterative Learning Control for a Class of Discrete-Time Dynamic Systems

  • 김용태
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.363-368
    • /
    • 2004
  • In this paper, the robustness property of 2nd-order iterative learning control(ILC) method for a class of linear and nonlinear discrete-time dynamic systems is studied. 2nd-order ILC method has the PD-type learning algorithm based on both time-domain performance and iteration-domain performance. It is proved that the 2nd-order ILC method has robustness in the presence of state disturbances, measurement noise and initial state error. In the absence of state disturbances, measurement noise and initialization error, the convergence of the 2nd-order ILC algorithm is guaranteed. A numerical example is given to show the robustness and convergence property according to the learning parameters.

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

측정 잡음을 고려한 저차의 동적출력궤환 제어기 설계 (Low-Order Dynamic Output Feedback Controller Design Against Measurement Noise)

  • 손영익;조남훈;심형보
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.383-388
    • /
    • 2007
  • This paper considers a low-order dynamic output feedback controller design problem. Since the proposed control law inherently has a low-pass filter property, it can alleviate the mal-effects of the sensor noise without additional filter designs. Frequency domain analysis shows the characteristics of the proposed control law against measurement noise. The effectiveness of the proposed control law is illustrated by numerical simulations with a rotary inverted pendulum and a convey-crane. Using only one integrator the proposed control law has the advantage to the stabilization problem with sensor noise as well as it can successfully replace the measurements of derivative terms in a state feedback control law.

압력분포 측정시스템의 개발 (Development of a Pressure Distribution Measurement System)

  • 정진호;이기원;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권2호
    • /
    • pp.213-218
    • /
    • 2000
  • Pressure distributions of the soft tissue are valuable for understanding and diagnosing the disease characteristics due to the mechanical loading. Our system measures dynamic pressure distributions in real-time under the general PC environment, and analyzes various foot disorders. Main features of the developed system are as follows: (1) With the resistive pressure sensor matrix of 40${\times}$40 cells, the data is sent to the PC with the maximum sampling rate of 40 frames/sec. (2) For each frame, contact area, pressure and force are analyzed by graphic forms. Thus, various biomechanical parameters are easily determined at specific areas of interests. (3) A certain stance phase can be chosen for the analysis from the continuous walking, and the detailed biomechanical analysis can be done according to an arbitrary line dividing anterior/posterior or medial/lateral plantar areas. (4) The center of pressure (COP) is calculated and traced from the pressure distribution data, and thus the movement of the COP is monitored in detail. A few experiments revealed that our system successfully measured the dynamic plantar distribution during normal walking.

  • PDF

Ultrasonic Distance Measurement Method by Using the Envelope Model of Received Signal Based on System Dynamic Model of Ultrasonic Transducers

  • Choe, Jin-Hee;Lee, Kook-Sun;Choy, Ick;Cho, Whang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.981-988
    • /
    • 2018
  • In order to acquire an accurate TOF, this paper proposes a method that produces TOF by using a mathematical model for the envelope of the received signal obtained from a system dynamic model of ultrasonic transducer. The proposed method estimates the arrival time of the received signal retrospectively by comparing its wave form obtained after triggering point with its mathematical envelope model. Experimental result shows that the error due to variation of triggering point can be dramatically decreased by implementing the proposed method.

전차선 압상량 검출을 위한 최적 시스템 구현 (Implementation of Optimization of the Uplift Amount Measurement System of Overhead Contact Line)

  • 박영;이기원;박철민;권삼영
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.886-890
    • /
    • 2013
  • Uplift of contact wire and dynamic characteristics between pantograph and contact wire are key interaction performance of OCS (Overhead Catenary System). These two evaluation items are the approval criteria for the performance between OCS and pantograph. A telemetry system or DAQ (Data Acquisition) System based on wireless communication make it monitor a dynamic behavior which is measured directly in a 25 kv like parts. While permissible working time is too short time to install is too long. In this paper, it is described that optimization the telemetry measurement system for OCS and increasing accuracy, easy adaptation, and faster handling can be also achieved through the study.

파라미터 수정을 사용한 형상변화 및 측정오차가 있는 빔의 모델개선 (Model Updating of Beams with Shape Change and Measurement Error Using Parameter Modification)

  • 윤병옥;최유근;장인식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.335-340
    • /
    • 2001
  • It is important to model the mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In the finite element modeling, the errors can be contained from the physical parameters, the approximation of the boundary conditions, and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. Model updating using parameter modification is appropriate when the design parameter is used to analyze the input parameter like finite element method. Finite element analysis for cantilever and simply supported beams with uniform area and shape change are carried out as model updating examples. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies.

  • PDF

몬테카를로 모사를 이용한 동압력 교정기 불확도 평가 (Uncertainty Evaluation of Dynamic Pressure Calibrator by Monte Carlo Simulation)

  • 김문기
    • 한국군사과학기술학회지
    • /
    • 제13권4호
    • /
    • pp.665-672
    • /
    • 2010
  • This paper describes Monte Carlo Simulation(MCS) to assess the uncertainty of dynamic pressure calibrator and the expanded uncertainty results that were compared by GUM approximation and MCS. MCS uncertainties were computed using defining a domain of possible inputs, generating inputs randomly using probability distribution, performing a deterministic computation repeatedly and aggregating the results. It was revealed that the expanded uncertainty between GUM and MCS was different from each other. the expanded uncertainties were 0.5366%, 0.4856%, respectively. MCS is a suitable method for determining the uncertainty of simple and complex measurement systems. It should be more widely used and studied in measurement uncertainty calculations.