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Abstract

In this paper, the robustness property of 2nd-order iterative learning control(ILC) method for a class of linear and
nonlinear discrete-time dynamic systems is studied. 2nd-order ILC method has the PD-type learning algorithm based
on both time-domain performance and iteration-domain performance. It is proved that the 2nd-order ILC method has
robustness in the presence of state disturbances, measurement noise and initial state error. In the absence of state
disturbances, measurement noise and initialization error, the convergence of the 2nd-order ILC algorithm is guaranteed.
A numerical example is given to show the robustness and convergence property according to the learning parameters.
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1. Introduction

Ever since Arimoto suggested ILC methodologyl1],
there have been a number of efforts to improve and
apply ILC method. In fact, ILC can be easily applied to
the repetitive tasks that is in many robotic industrial
operations since it requires less a priori knowledge
about the controlled system in the controller design
phase and it has the capability of modifying an
unsatisfactory control input signal based on the
knowledge of previous operations of the same task[2-10].
Also, ILC is known to guarantee an eventual uniform
tracking performance as the algorithm repetitively
applies.

External disturbances such as state disturbances,
measurement noise and initial state error are inevitable
in the real control systems. This disturbances can have
an bad effect on the ILC system and make the system
diverge by its iterative property. Therefore, the
robustness problem of ILC has been studied by many
researchers[11-20]. Lee and Bien[11] reported the
possibility of divergence of control input due to the
initial state error. Lee and Bien[12, 13] showed that the
trajectory errors can be estimated in terms of initial
state error and parameters of ILC algorithm. Heinzinger
et. al. have studied the robustness properties of a class
of learning control algorithm for the nonlinear
system[14]. Saab proved the convergence and the
robustness of both P-type learning control for the
nonlinear time varying system and D-type learning
control for the linear discrete-time system[16, 17]. Park
et. al. investigated the effect of initial state error in the
PID-type ILC systems[19].
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Bien and Hur[10] proposed the higher-order ILC
method that utilize more than one past error history
contained in the trajectories generated at prior iterations.
It was shown that the higher-order ILC can improve the
convergence performance and the robustness to the
disturbances by using the multiple past-history data
pairs at the expense of additional storage. However, this
ILC method can be applied to the dynamic system that
has the direct linkage between the input and the output
and there may arise some difficulty in finding the
suitable weighting matrices satisfying the convergence
conditions, especially when the number of past-history
data pairs is large[10,18].

Kim and Bien[20] proposed 2nd-order PD-type ILC
algorithm based on both time-domain performance and
iteration—domain performance for linear continuous-time
and discrete-time dynamic systems. The convergence of
the 2nd-order PD-type ILC algorithm was proved[20]. In
this paper, we study the robustness property of
2nd-order PD-type ILC method for linear discrete-time
dynamic systems. Then 2nd-order ILC method for
nonlinear discrete—time dynamic systems is proposed and
the robustness of the proposed ILC algorithm is
investigated. A numerical example is given to show the
robustness and the convergence property according to
parameters change.

In this paper, the following notational convention is
adopted %k is the iteration number; x(z) is state
vectors, (7) is control input vector and y(7) is output

vector for discrete-time systems; [, is # x y identity

matrix; | x| denotes the Euclidean norm of a vector y;
| A | denotes the induced matrix norm of a matrix A;
| x| o denotes the infinity norm of a vector x [21].

The A, norm for a time function g: [0, N] — R” is
defined as follows[20].
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where A>(if g>1 and A<() if g¢1. From the A,
that | 7\, <

17l o < ™ | I v, » implying that the A, norm

norm definition, it is  obvious

and infinity norm are equivalent[21]. In this paper, the
robustness of the 2nd-order ILC is proved by employing
the A, norm.

2. Robustness of 2nd-order ILC for
linear discrete-time systems

In this section, a robust ILC algorithm for linear
discrete-time dynamic systems is proposed. Consider the
linear discrete-time dynamical system described by

x,+1) = Ax,(i)+B u,(i)+w,(7) (1)
vi(i) = Cx,(0)+v,(2)
where x, R”, u, = R” and y,= R’ denote

the state vector, input vector and output vector

respectively. gy, R” and ¢,= R’ denote state

disturbance and output measurement noise. A, B and

C are constant matrices with appropriate dimensions.

We assume the following properties.

Al w,(;) and p,(;) are bounded by p, andp,
Vk, i=[0,N] ie, Vi, supcromll wild) I <b,
and Vk, sup ie[0, N] [ Uk(i) [ <b, -

A2 Initial state error is bounded by 5, V& in [(, N].
Le, [xg—x4(0) | <by for Ve

Lety (7) be the trajectory  on

7 € [0,N]. Then the 2nd-order PD-type ILC learning
law for the system (1) can be described as follows[20].

desired output

upi1(d = w () + T8y, G+ 1D+ A6y, () (9
+(D(6yk(i)—®5yk_1(i))]

where  6y,(i) =y (i) —y(7), i= 0, 1, -,
I') A, & © are the parameters of learning law.

N and

Theorem 1 Let the system described by (1) satisfy the
assumptions A1-A2 and use the learning law (2). For a

x 40)
trajectory y,(3), i € [0, N] which are achievable[14], if

desired initial state and a desired output

| I-TCB| <p<1, then input error between ¢, and ¢,

is bounded as jk — oo, Also, state error and output
error are bounded. These bounds depend on the bounds
of initial state error, state disturbance and measurement
noise. Moreover, whenever p, b, and p, tend to zero,
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state error, output error, and input error converge

uniformly to zero as j( — oo.

Proof

From (1) and (2), the input error can be written as

up1() = u (D) —u () + T C(x, (74 1)
—x,(i+ 1))+ v,(G+1)

+ (A +P)(Cxy, () — Cx (D) + v, (7))
—0O(Cx kfl(l.)_cxd(i))—i_kal(i))]
=I—TCB)(u)— u ()
—T(CA+ACH+P0O)(x,(2) — x,(2)
+TPO0C(x ;()—x ,—1(D)) + T Cw,(9)
+T0,+1)+T(A+ D) (2)

-0y, (3

ud(i) -

(3)

Taking the norm, and by using 8y, 2 #,—u, and

the bounds, we have
62 1D I < 1 I=TCBI || 62,5 |

+ I T(CA+ACHPO) || | 2D —x,(d) |
+ [TOOC | | x D) —x,—1(2) |
+ATCH TwD I+ 1T 11 ol+D |
+ I TA+P) | oo |

+ 1120 || [ v,—i(d) |

P62 4(D) | + 7ol x(d)—x,(5) |
+hlxd(D—x 1D |
+bl'wa+(bl'+bl'A<P+bl'<D®)bU

IA

4)

where p2 || [-T'CB|, hy=|[|I'(CA+AC+20O) |,
= |TOOC | o2 T |, brce=I1TCIl, brao=
[T(A+®) |, and bree = [I'PO |,

Now summation

xq(2) = x . (2),

writing a expression  for

we have

20—, (1) = A, (0) — 2, (0)) + 3 4F-m1

m=0

- [Bluy(m) —u,(m)) +w(m)].
5)

Taking norms and using the bounds, we obtain

I —x4() | < a' | x,00) = x,(0) | + ;Z;:;a immel
L6l uy(m)—w(m) | +b,],
(6)

where g= | A || and bp= | B .
Inserting (6) in (4), we can obtain
i—1 .
I 62 i1 (D) I < 21l S2 1 () | + 7 obg mzodl*mfl [ Soc,(m) |
i—1 .
+h1b3m2:0a”’”71 | 62 1 (m) |

i—1 .
(gt ) by X a "

+(hogt+hy) a' bg+bre b,
+(b1 +b1'A(I) +b1'(p®) by.
(7)
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By multiplying both side of (7) by 4 ~*‘ and taking the
A , norm,

18201 1= 0180k | s+ by (i f g a7

iz1
a0 Sl e B |

sup
[0, N

(o @ I B () |
—Ni_q

+ (h()_'—hl)bxﬂ ZEE%pN] a a

a

=0

+ by gD il (A =Dm

sup B A T
+ (hy+h)b, i=[0. N] a mZ::Oa

(breby+(br+braotbree) b,)

sup —N
i=[0,N]

-+

_ —(A-1N
< (p+k1a’liﬁ) I620,(2) I v,

. -(A=-1DN .
+ kya X 1 IO Y

+k3 bxo‘f’(kg k4+b[‘c) bw
+(bl'+bl'/\<b+bl'<b<~) )by ’

A—
a 1

()
where k) = hybg, ky= hbg, ky= hy+hy, and k=

ci—1

—A 1
SUp je1o, M@ ZmZ a

i—m—1

Define p; =p+ kja ~

—(A=DN

) Py=ksa '(

kybg+ (k3ky+brc)by,+ (br + braot bree)b,.

-(A-=1DN

- and ¢
a* " 1-1

Then the inequality (8) yields
6244 1(D) | 2, <Py I 264 (D) || x,+ 05 I B2ty (D) || 1, +£.(9)

Since () < p ¢ 1 by assumption, it is possible to

choose A sufficiently large so that
) __ —(A-DN
pl+92 = D+k1a ( a}\7171 (10)
L l—g O-bN
‘I‘kz(l ( A—1 ) <].
a —1
Thus, (9) implies
i 5 ) < —F&f 11
lm |62 ,() I+, < 1—(0, 40y ° an

Since ¢ is bounded, (11) implies that the input error is
bounded V¥ £ in [(, N]. Also, we can easily show that

Eﬁm I 62 1(3) I »,=0, whenever e — (), Using (6)
and (11), the state error bound is obtained as

A=1)N

. 1—a
lim 16z, (i) |, < byg+bya (—— —) (12)
k—co d a —

;+b k

1=(py+py)

and the output error bound is also obtained as

17@7()\71)N

lim Il 6y (i) I, < blbyg+bpa ' (——= ) (13)
k—>c0 g a —1
€
—C  _tbk]+D,
17(p1+p2) U -1} v
Therefore, (12) and (13) imply that the state and

output error are bounded. This completes the proof.

3. Robustness of 2nd-order ILC for a
Class of nonlinear discrete-time systems

Consider a class of nonlinear discrete-time dynamic
system described by

2 (i+1) = fla,(i),8) + Bl (i),5)u, (i) +w, (i),
yk(z) = ka+vk(i)
(14)

wherez, (i) € R"u, (i) ER"y, (i) ER"w,(i)ER",  and
v, (i)ER" denote the state, control input, system output,

state disturbance, and output noise, respectively. We
assume the following properties.

B1 For each fixed x,(0) with w,=( and p,=(, the

state mapping S and the output mapping R are
That is,  x,( - )= S(x(0), %, (- ))
and y,( - )= R(x,(0), 2,( - )).

B2 The functions A x,,7) and B(x,, i) are uniformly

one-to-one.

globally Lipschitz in 4 on the interval [(), N].
B3 The function B(x,,s) is bounded on R”x[(), M].
B4 w,(:) and p,(;) are bounded by p, and b, V £,
i€ [0,N]. ie, Vk, sup cio.m | wi(d) | <b, and
Yk, sup cro.ml v(0) | <b,.
Initialization error is bounded by p 0, VEE[0, NI

Le, [l xg—2x,00) | <b 4.

B5

Then the 2nd-order PD-type ILC learning law for the
nonlinear system (14) is proposed as follows.

U1 = u D+ (W0, D[ 6y, (G+1)+ A8y (3
+®(6y (7)) —O8y ,_1())]
(15)

where Syk(z')zyd(i)—yk(z'), 1= 0,1, -, N and

I') A, ® O are the learning parameters.
For proof clarification, function parameters will be shown

in  subscript notation  as! fo & Ax, (i), 1),

faz Rx (i), 1),

wp 2 u(3), ug2ui), w, 2w, (i),

(= U/e(l.), BkéB(x(i),l'), B4 B(Xd(i),i), ykéyk(i),
vi2y (D), I',20(y,(2),7),and kyky are the Lipschitz

constants for f, and B, respectively.
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Theorem 2 Let the nonlinear system described by (14)
satisfy the assumptions B1-B5 and use the learning

law (15). For a desired initial state x ,(() and a desired
which are achievable [14], if

then input error between ¢4, and

output trajectory y,,

| I-T,CB, | <p <1,
u,, is bounded as k£ — oo. In addition, state error and

output error are bounded. The bounds of input error,
state error and output error depend on the bounds on
initial state error, state disturbance, and measurement
b,, and p, tend to

state error, output error, and input error converge

noise. Moreover, whenever p,
Z€T0,
uniformly to zero as g — oo,

Proof

From (14) and (15), the input error can be written as

= Ugq— U k_Fk[ C(fd—l-Bdud)
- C(fk‘l’ Bkuk-l- wk) - Uk(i+ ].)
+ (A + CD)(de— ka‘l' 'Uk)
_®®(de_ C.?C k—l)—l_vk—l)]

Ug— U v

(I=T,CB)(uyg—u ) =V, (C(fy— f1)
+ C(B;— Bpuy) +1' @0C(x j—x 4—1)
- (AC+H2O) (xy—x) +1 ,Cw,,
+I w,(+ 1)+ (A+D)y,

+ 7T k@@y 1

(16)

Taking the norm, and by using &¢,24%,—u, and

bud> SUD ic[0. M | 2,1l » we can obtain

[ 8u1¢+1\| < [ I-T,CB,l |l 62,
+ 1 Dl (Rt b ) | Cllcg— 2, |
+ 1T A+P)CT 2=,
+ IT20C | lxy—2x 1|
+ITCH Tw, I+ 1T, o G+1)
+ I A+ ol + 17,200 v,y
< olSu,ll +hyllx—

+h, I Xqg— X p—1 | +b6rb cbw
+(br+brkblxq>+brb<b®)by

17
where p= | -T,CB, I b= I T 1l b= Il O,
bro=A+P | ,000= 1 PO, hy=0br(kit+ kb 4

baro)b e, and Ly =0brbgob .

Taking the norm and using the Lipschitz conditions,
we have

I x,(i+1) — x,(i+1) |
I fat+ Bawg— (fp+ Byup+ wy) |l ,
kil xg— x| + kgl xg—2, 11 b4y
+opllug—u | + I wel,
(kf+ kpb ) | x5— %, |
+bpl ug—u, | +b,.

Al

(18)

IA

Now writing a summation expression for

I cq(2) —

X k+1(l.) ” ’
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” Xq — xk+1 ” <a' ” xd(O)*Xk(O) ”
+ mzoa Wogl wgm)—w,(m)| +b,]
(19)

where g = kit kpb -
Inserting (19) in (17), we obtain

i—1
162 401 < 01 6u,l +h0b >, a” " Su(m) |

+hibp 2 dlimiln 6uk 1(m) [

+(h0+h1)b 2 dl, -1
+(h0+h1)dlbx0+brb wa
+bor(1+brotbas)d,.

(20)

By multiplying both side of (20) by ¢ ~* and taking
the A, norm,

— (A=D1

I CN B R O) R

i—1
(A=1Dm sup —Am
Slatoe S S |

sup —o-ni S - m
+h1bB ZE[O,N]a mzza
melo Ny @ 18w (m) |
sup —Ni i
+ (gt h)by [0 N @ ‘al
— A7 < i—m—1
+ (ot k)b, ZE[O N] ¢ mzz:oa
+b0(bcby+(1+bro+boe)d,)
sup aﬂ\,-
[0, N]
g N .
< (P+hobga 4a—a,,\,1 1 ) Say(D) 1y,
gD
+h1bBail( PR )”6uk 1(1)” Ay
+(hg+ h) b+ ((hy+ hl)k +brbo)b,
+br(1+bro+ boe)d,
= 0y 8oyl n, 405060, Il 1, +¢
(21)
where k= . SUP a M iz_:la’;mfl p=p+
L ie[0, M #=0 >l
-A—1)N -A—1)N
1, 1— 1—
hobpa 1(%)7 p2 = hibpa (Aai)a n d
a - a

(h0+h1) bm+((h0+h1)k1+bl"bc) bw+
br(l+br0t+boo)b,
Since () <

p {1 by assumption, it is possible to

choose A sufficiently large so that

L, l—g DN
pl+p2 =P+ka ( A—1 -1 ) (22)
] —~(A=1DN
+ kya I ) < 1.
Thus, we <can easily show that, whenever all

disturbances tend to zero, ie, ¢ — (0, lim [ Su () || »
f—oo d
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= [15]. The equation (21) implies

€

I, sm. (23)

. 5 \
lim I 62¢ ,(2)
Since ¢ is bounded, (23) implies that the input error is

bounded V4% in [(,N]. Using (19) and (23), we
obtain the state error bound

. . L l—g QDN
Hm | 8x,(2) |, < b+ bpa ™ ( RS )
€
1—(Dl+p2)+bwk1
(24)

and the output error bound

. 5 -1 —Q_()\_DN
lim | 6y,(2) |\, <blbygtbpa P )
&

(o 75y FoukI+b,.
(25)

Therefore, (24) and (25) implies that the state error and
output error are bounded. This completes the proof.

4. Simulation Example

In the following, we shall consider linear discrete-
time system

[xl(i+1) :[ 0.9953 0.0905][961(2')
x5(i+1) —0.0905 0.81441] x,(2) (26)
0.0047] ., 1 [0.02]. /-
100905 ”(ZH[ 0 ]“’(’)
¥ = [0 1]["1(’? +0.05 (3, @7
x2(l)
where (7) and p(;) are state disturbance and

measurement noise that are random numbers whose
elements are normally distributed with mean 0 and
variance 1. We assume that the initial state error is
normally distributed random numbers bounded by 0.1.

Also, suppose that the desired output trajectory is
given by

v (i) = 2 sin(0.047 7) i=1,2,--,50. (28

' s 50 based on the
| I—TCB| <p<1. Let us assume that ® = —().3.
When I'=5.(0, ®=-0.3, A=() and ©=(, the
PD-type learning algorithm shows good performance as

50 5 50
Zl | es() | =5.22 and ;1 Z‘l | e(7) | =361.67.
The result in Figure 1 shows the sum of error according
to the parameters A and © at 50th iteration, that is,

chosen as condition

§J} | esp(d) | - When A=—(.2 and ©=().1, we can
i=1
obtain the best result as 1.735. Figure 2 shows that

50 50 )
the total sum of error, ;1 Zl | e,(i)| 1is bounded

and the best result is 26365 when A=-—(.3 and

®=(.1. From this result,
2nd-order PD-type learning law is robust to state
disturbance, measurement noise and initial state error.
Also, we can find that the tracking performance can be
improved by choosing the suitable parameters of learning
law and depends on the bounds on initial state error,
state disturbance and measurement noise.

we can see that the

i 50 .
Fig. 1. 3 | e4(i) | under state disturbances,
=1 h

measurement noise and initial state error.

i 50 50 .
Fig. 2. ;1 ;1 | ¢,(¢) | under state disturbances,

measurement noise and initial state error.

5. Conclusion

In this paper, the robustness property of 2nd-order
ILC method for a class of linear and nonlinear
discrete-time dynamic systems 1is investigated. It is
proved that the bounds of input error, state error and
output error depend on the bounds of initial state error,
state disturbance and measurement noise. Also, it is
shown that, whenever Iinitialization error, state
disturbances and measurement noise tend to zero, the
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state, output, and input error converge uniformly to zero.
A numerical example is given to show the robustness of
the 2nd-order ILC method for the discrete-time dynamic
system. Robustness of the ILC method for nonlinear
systems of more general form will be studied against
initial state error, state disturbance and measurement
noise.
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