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Abstract

In this paper, the robustness property of 2nd-order iterative learning control(ILC) method for a class of linear and 

nonlinear discrete-time dynamic systems is studied. 2nd-order ILC method has the PD-type learning algorithm based 

on both time-domain performance and iteration-domain performance. It is proved that the 2nd-order ILC method has 

robustness in the presence of state disturbances, measurement noise and initial state error. In the absence of state 

disturbances, measurement noise and initialization error, the convergence of the 2nd-order ILC algorithm is guaranteed. 

A numerical example is given to show the robustness and convergence property according to the learning parameters. 
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1. Introduction

Ever since Arimoto suggested ILC methodology[1], 

there have been  a number of efforts to improve and  

apply ILC method. In fact, ILC can be easily applied to 

the repetitive tasks that is in many robotic industrial 

operations since it requires less a priori  knowledge 

about the controlled system in the controller design 

phase and it has the capability of modifying an 

unsatisfactory control input signal based on the 

knowledge of previous operations of the same task[2-10]. 

Also, ILC is known to guarantee an eventual uniform 

tracking performance as the algorithm repetitively 

applies.

External disturbances such as state disturbances, 

measurement noise and initial state error are inevitable 

in the real control systems. This disturbances can have 

an bad effect on the ILC system and make the system 

diverge by its iterative property. Therefore, the 

robustness problem of ILC has been studied by many 

researchers[11-20]. Lee and Bien[11] reported the 

possibility of divergence of control input due to the 

initial state error. Lee and Bien[12, 13] showed that the 

trajectory errors can be estimated in terms of initial 

state error and parameters of ILC algorithm. Heinzinger 

et. al. have studied the robustness properties of a class 

of learning control algorithm for the nonlinear 

system[14]. Saab proved the convergence and the 

robustness of both P-type learning control for the 

nonlinear time varying system and D-type learning 

control for the linear discrete-time system[16, 17]. Park 

et. al. investigated the effect of initial state error in the 

PID-type ILC systems[19].   

Bien and Hur[10] proposed the higher-order ILC 

method that utilize more than one past error history 

contained in the trajectories generated at prior iterations. 

It was shown that the higher-order ILC can improve the 

convergence performance and the robustness to the 

disturbances by using the multiple past-history data 

pairs at the expense of additional storage. However, this 

ILC method can be applied to the dynamic system that 

has the direct linkage between the input and the output 

and there may arise some difficulty in finding the 

suitable weighting matrices satisfying the convergence 

conditions, especially when the number of past-history 

data pairs is large[10,18]. 

Kim and Bien[20] proposed 2nd-order PD-type ILC 

algorithm based on both time-domain performance and 

iteration-domain performance for linear continuous-time 

and discrete-time dynamic systems. The convergence of 

the 2nd-order PD-type ILC algorithm was proved[20]. In 

this paper, we study the robustness property of 

2nd-order PD-type ILC method for linear discrete-time 

dynamic systems. Then 2nd-order ILC method for 

nonlinear discrete-time dynamic systems is proposed and 

the robustness of the proposed ILC algorithm is 

investigated. A numerical example is given to show the 

robustness and the convergence property according to 

parameters change.

In this paper, the following notational convention is 

adopted : k  is the iteration number; x( i )  is state 

vectors, u( i )  is control input vector and y( i )  is output 

vector for discrete-time systems; I r  is  r × r  identity 

matrix; ∥x∥  denotes the Euclidean norm of a vector x; 

∥A∥denotes the induced matrix norm of a matrix A ; 

∥x∥∞
 denotes the infinity norm of a vector x  [21]. 

The λ
d

  norm for a time function g : [0,N] → Rn  is 

defined as follows[20].
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 ∥g(⋅)∥ λ
d
 = sup i∈[0,N] e

λi
∥g( i)∥

where λ > 0  if a > 1  and λ < 0   if a < 1. From the  λ
d

  

norm definition, it is obvious that ∥f∥ λ
d 
≤   

∥f∥∞ ≤ e
λT
 ∥f∥ λ

d
 , implying that the λ

d
 norm 

and infinity norm are equivalent[21]. In this paper, the 

robustness of the 2nd-order ILC is proved by employing 

the λ
d

 norm.

2. Robustness of 2nd-order ILC for   

l inear discrete-time systems

In this section, a robust ILC algorithm for linear 

discrete-time dynamic systems is proposed. Consider the 

linear discrete-time dynamical system described by 

   

x k(i+1) = A x k(i )+B u k(i )+w k(i )      (1)
y k(i ) = C x k(i )+v k(i )

where xk ∈ R n, uk ∈ R r  and yk ∈ R r  denote   

the state vector, input vector and output vector 

respectively. wk ∈ R n  and vk ∈ R r  denote state 

disturbance and output measurement noise. A, B  and 

C   are constant matrices with appropriate dimensions. 

We assume the following properties.

A1  wk(i)  and v k(i)  are bounded by bw  and bv,      

   ∀k, i∈[0,N]. i.e., ∀k,sup i∈[0,N]∥wk(i) ∥≤bw   

    and ∀k, sup i∈[0,N]∥v k(i) ∥≤b v  .

A2 Initial state error is bounded by bx0,∀k  in [0,N].

    i.e., ∥x 0-xk(0)∥≤bx0  for ∀k.

Let y d( i )  be the desired output trajectory on

i ∈ [0,N].  Then the 2nd-order PD-type ILC learning 

law for the system (1) can be described as follows[20].

 u k+1(i) = u k(i)+Γ[ δy k (i+1)+Λδy k(i)
+Φ(δy k(i)-Θδy k-1(i) )]

 (2)

where δy k(i )=yd(i )-y k(i ), i= 0, 1, ⋯, N  and 

Γ, Λ, Φ, Θ   are the parameters of learning law. 

Theorem 1  Let the system described by (1) satisfy the 

assumptions A1 -A2 and use the learning law (2). For a 

desired initial state x d(0)  and a desired output 

trajectory y d( i), i ∈ [0,N]  which are achievable[14], if 

∥I-ΓCB∥≤ρ < 1 , then input error between u d  and uk  

is bounded as k → ∞.  Also, state error and  output 

error are bounded. These bounds depend on the bounds 

of initial state error, state disturbance and measurement 

noise. Moreover, whenever bw, bv  and bx0  tend to zero, 

state error, output error, and input error converge 

uniformly to zero as k → ∞ .

Proof

From (1) and (2), the input error can be written  as

ud(i) - u k+1(i)=ud(i)-u k(i)+Γ[C (xk (i+1)
-xd ( i+1))+vk (i+1)
+(Λ+Φ)(Cxk (i)-Cxd(i)+vk (i ))
-ΦΘ(Cx k-1 (i)-Cxd(i))+v k-1 (i))]
= (I-ΓCB)(ud(i)-u k(i))
-Γ(CA+ΛC+ΦC)(xd (i)-xk(i))
+ΓΦΘC(x d (i)-x k-1(i))+ΓCwk(i)
+Γvk(i+1)+Γ(Λ+Φ)vk(i)
-ΓΦΘv k-1(i)

 

(3)

Taking the norm, and by using δu k ≜ ud-u k  and 

the bounds, we have

∥δu k+1(i)∥ ≤ ∥I-ΓCB∥∥δu k(i) ∥
+∥Γ(CA+ΛC+ΦC)∥∥xd(i)-xk(i)∥
+∥ΓΦΘC∥∥xd(i)-x k-1(i)∥
+∥ΓC∥∥wk(i)∥+∥Γ∥∥vk(i+1)∥
+∥Γ(Λ+Φ)∥∥vk(i) ∥
+∥ΓΦΘ∥∥v k-1(i) ∥

≤ ρ∥δu k(i) ∥+h 0∥xd(i)-xk(i)∥
+h 1∥xd(i)-x k-1(i)∥
+b ΓCbw+(b Γ+b ΓΛΦ+b ΓΦΘ)b v

 (4)

 where ρ≜∥I-ΓCB∥, h 0≜∥Γ(CA+ΛC+ΦC)∥,

h 1≜∥ΓΦΘC∥,b Γ≜∥Γ∥, b ΓC≜∥ΓC∥, b ΓΛΦ≜

∥Γ(Λ+Φ)∥ , and b ΓΦΘ ≜ ∥ΓΦΘ∥.

Now writing a summation expression for 

x d ( i)- x k (i),   we have

  
 





 

⋅

 (5)

Taking norms and using the bounds, we obtain

∥xd(i)-x k(i)∥≤ a
i
∥x d(0)- x k (0) ∥+ ∑

i- 1

m=0
a
i-m-1

⋅ [bB∥ud(m)-uk(m)∥+bw],

 (6)

where a=∥A∥  and bB=∥B∥.

Inserting (6) in (4), we can obtain

∥δu k+1(i)∥≤ ρ∥δu k(i)∥+h 0bB ∑
i-1

m=0
a i-m-1∥δuk(m)∥

+h 1b B ∑
i-1

m=0
a i-m-1∥δu k-1(m)∥

+(h 0+h 1) b w ∑
i-1

m=1
a i-m-1

+(h 0+h 1) a
i
 b x0+b ΓC bw

+(b Γ +b ΓΛΦ +b ΓΦΘ) b v.

 (7)
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By multiplying both side of (7) by a - λ i  and taking the 

λ
d

 norm,

∥δuk+1(i)∥ λ
d
≤ ρ∥δuk(i)∥ λ

d
+h 0bB

sup
i∈[0,N]

a -(λ-1)i

∑
i-1

m=0
a (λ-1)m sup

m∈[0,N]
a - λm∥δuk(m)∥

+ h 1bB
sup

i∈[0,N]
a -(λ-1)i

∑
i-1

m=0
a (λ-1)m

⋅
sup

m∈[0,N]
a

-λm
∥δu k-1(m)∥

+ (h 0+h 1)bx0
sup

i∈[0,N]
a

-λ i
a
i

+ (h 0+h 1)bw
sup

i∈[0,N]
a

-λ i
∑
i-1

m=0
a
i-m-1

+ (b ΓCbw+(b Γ+b ΓΛΦ+b ΓΦΘ) b v)

⋅
sup

i∈[0,N]
a -λ i

≤ (ρ+k 1a
-1 1-a-(λ-1)N

a
λ-1-1

) ∥δuk(i)∥λ
d

+k 2a
-1(

1-a
-(λ-1)N

a
λ-1-1

)∥δuk-1(i)∥λ
d

+k 3 b x0+(k 3 k 4+b ΓC) bw
+(b Γ+b ΓΛΦ+b ΓΦΘ )b v ,

(8)

where k 1 = h 0bB, k 2 = h 1bB, k 3 = h 0+h 1,  and k 4 =

sup i∈[0,N]a
- λ i

∑
i- 1

m=0
a i-m-1.  Define ρ

1=ρ+k 1a
-1   

⋅(
1- a - ( λ-1)N

a
λ-1

-1
), ρ 2= k 2a

- 1
(

1- a - ( λ-1)N

a
λ-1

-1
), and  ε=  

k 3b x0+(k 3k 4+b ΓC)bw+(b Γ +b ΓΛΦ+b ΓΦΘ)b v.  

Then the inequality (8) yields

∥δuk+1(i)∥λ
d
≤ρ 1∥δuk(i)∥λ

d
+ρ 2∥δuk-1(i)∥λ

d
+ε.(9)

Since 0 ≤ ρ <  1  by assumption, it is possible to 

choose λ   sufficiently large so that

 
ρ

1+ρ 2 = ρ+k 1a
-1(

1-a -(λ-1)N

a
λ-1

-1
)

+k 2a
-1(

1-a -(λ-1)N

a
λ-1

-1
) < 1.

 (10)

Thus, (9) implies

 lim
k→∞

∥δu k(i)∥ λ
d
 ≤ 

ε

1-(ρ 1+ρ 2)
.  (11)

Since ε  is bounded, (11) implies that the input error is 

bounded ∀ k  in [0,N]. Also, we can easily show that

lim
k→∞

∥δu k(i) ∥ λ
d
=0,  whenever ε → 0.  Using (6) 

and (11), the state error bound is obtained as

lim
→∞
∥∥ ≤  




⋅ 


 

 (12)

and the output error bound is also obtained as

lim
→∞
∥∥ ≤     






⋅ 


   

 (13)

Therefore, (12) and (13) imply that the state and 

output error are bounded. This completes the proof.

3. Robustness of 2nd-order ILC for a 

Class of nonlinear discrete-time systems

Consider a class of nonlinear discrete-time dynamic 

system described by

      
  

 (14)

where ∈ ∈ ∈  ∈ , and 

 ∈   denote the state, control input, system output, 

state disturbance, and output noise, respectively. We 

assume the following properties.

B 1  For each fixed x k(0)  with wk=0  and vk=0,  the 

state mapping S  and the output mapping R  are 

one-to-one. That is, x k(⋅)= S(x k(0),u k (⋅ ))  

and y k(⋅)=R(x k(0),uk(⋅)).  

B 2  The functions f(x k,i)  and B(x k, i)  are uniformly 

globally Lipschitz in x  on the interval [0,N].  

B 3   The function B(x k,i)  is bounded onRn×[0,N].   

B 4  wk(i)  and v k(i)  are bounded by bw  and bv, ∀k,

i∈[0,N]. i.e., ∀k, sup i∈[0,N]∥wk(i)∥≤bw  and 

∀k, sup i∈[0,N]∥v k(i) ∥≤b v.  

B 5   Initialization error is bounded by bx0,∀k∈[0,N]. 

i.e., ∥x 0-xk(0)∥≤b x0.

Then the 2nd-order PD-type ILC learning law for the 

nonlinear system (14) is proposed as follows.

u k+1(i) = u k(i)+Γ(y k (i),i) [ δy k (i+1)+Λδy k(i)
+Φ(δy k(i)-Θδy k-1(i))]

(15)

where δy k(i )=yd(i )-y k(i ), i= 0, 1, ⋯, N  and 

Γ, Λ, Φ, Θ  are the learning parameters. 

For proof clarification, function parameters will be shown 

in subscript notation as: f k ≜ f(x k(i ), i ),

f d≜ f(x d(i ), i ),

uk ≜uk(i), ud≜ud(i), wk ≜wk(i),

v k≜ v k(i), Bk≜B(x ( i), i), Bd≜B(xd (i),i), y k≜ y k(i),

y d≜y d(i), Γ k≜Γ(y k (i),i),and   are the Lipschitz 

constants for f k  and Bk, respectively.
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Theorem 2 Let the nonlinear system described by (14) 

satisfy the assumptions B 1 -B 5  and use the learning 

law (15). For a desired initial state x d(0)  and a desired 

output trajectory y d,  which are achievable [14], if 

∥I-Γ kCB k∥≤ρ < 1,  then input error between u d  and

uk  is bounded as k → ∞. In addition, state error and 

output error are bounded. The bounds of input error, 

state error and output error depend on the bounds on 

initial state error, state disturbance, and measurement 

noise. Moreover, whenever bw, bv,  and bx0  tend to 

zero,  state error, output error, and input error converge 

uniformly to zero as k → ∞.

Proof

From (14) and (15), the input error can be written as

ud-u k+1 = ud-u k-Γ k[C(f d+Bdud)
-C( f k+Bkuk+wk)-v k (i+1)
+(Λ+Φ)(Cxd-Cxk+v k)
-ΦΘ(Cx d-Cx k-1)+v k-1)]

          

= ( I-Γ kCBk)(ud-u k)-Γ k(C( f d- f k)
+C(Bd-Bk)ud)+Γ kΦΘC(x d-x k-1)
-Γ k (ΛC+ΦC)(xd-x k)+Γ kCwk
+Γ kv k(i+1)+Γ k(Λ+Φ)v k
+Γ kΦΘv k-1

(16)

Taking the norm, and by using δuk≜ud-u k   and 

bud≜ sup i∈[0,N]∥ud∥ , we can obtain

∥δuk+1∥ ≤ ∥I-Γ kCBk∥∥δuk∥
+∥Γ k∥(kf+kBb ud)∥C∥∥xd-xk∥
+∥Γ k(Λ+Φ)C∥∥xd-xk∥
+∥Γ kΦΘC∥∥xd-x k-1∥
+∥Γ kC∥∥wk∥+∥Γ k∥∥vk(i+1) ∥
+∥Γ k(Λ+Φ)∥∥vk∥+∥Γ kΦΘ∥∥v k-1∥

≤ ρ∥δu k∥+h 0∥xd-xk∥
+h 1∥xd-x k-1∥+b Γb Cbw
+(b Γ+b Γ

k
b ΛΦ+b Γb ΦΘ)b v

 (17)

where  ∥∥  ∥∥ ∥∥
b ΛΦ=∥Λ+Φ∥,b ΦΘ=∥ΦΘ∥, h 0= b Γ(k f+kBb ud

b ΛΦ)b C,  and h 1= b Γb ΦΘb C.

Taking the norm and using the Lipschitz conditions, 

we have

∥xd(i+1) - x k(i+1)∥
= ∥f d+Bdud-( f k+Bku k+wk)∥,
≤ k f∥xd-x k∥+kB∥xd-x k∥b ud

+bB∥ud-u k∥+∥wk∥,
≤ (k f+kBb ud)∥xd-x k∥

+bB∥ud-u k∥+bw.

 (18)

Now writing a summation expression for ∥x d(i)-

x k+1(i)∥,

∥x d - x k+1∥≤a i∥xd(0)- x k (0)∥

+ ∑
i- 1

m=0
a i-m-1[bB∥ud(m)-u k (m)∥+bw ]

 (19)

where a= k f+kBbud  . 

Inserting (19) in (17), we obtain

∥δu k+1∥ ≤ ρ∥δu k∥+h 0b B ∑
i- 1

m=0
a i-m-1∥δuk(m)∥

+h 1b B ∑
i- 1

m=0
a i-m-1∥δu k-1(m)∥

+(h 0+h 1)b w ∑
i- 1

m=1
a i-m-1

+(h 0+h 1)a
ib x0+b Γb Cbw

+b Γ(1+b ΛΦ+b ΦΘ)b v.

 (20)

By multiplying both side of (20) by a - λi  and taking 

the λ
d

 norm,

∥δu k+ 1( i)∥ λ
d
≤ ρ∥δu k(i)∥ λ

d
+h 0bB

sup
i∈[0,N]

a
- ( λ-1)i

⋅ ∑
i- 1

m=0
a ( λ-1)m sup

m∈[0,N]
a - λm∥δu k(m)∥

+h 1bB 
sup

i∈[0,N]
a

- ( λ-1)i
∑
i- 1

m=0
a

( λ-1)m

⋅
sup

m∈[0,N]
a

- λm
∥δuk- 1(m)∥

+(h 0+h 1)b x0
sup

i∈[0,N]
 a - λ ia i

+(h 0+h 1)bw
sup

i∈[0,N]
a

- λ i
∑
i- 1

m= 0
a
i-m- 1

+b Γ(b Cbw+(1+ b ΛΦ+b ΦΘ)b v)

⋅
sup

i∈[0,N]
 a

- λi

≤ (ρ+h 0b Ba
- 1 -a

- ( λ-1)N

a
λ-1-1

)∥δuk(i)∥ λ
d

+h 1b Ba
- 1

(
1-a

- ( λ-1)N

a
λ-1-1

)∥δu k-1(i)∥ λ
d

+(h 0+h 1)b x0+( (h 0+h 1)k 1+b ΓbC)bw
+b Γ(1+bΛΦ+b ΦΘ)b v

= ρ
1∥δu k∥ λ

d
+ρ 2∥δu k-1 ∥ λ

d
+ε

(21)

where k 1=
sup

i∈[0,N]
 a - λ i ∑

i- 1

m=0
a i-m-1, ρ 1=ρ+





 


 

   



 




a n d   

ε =  (h 0+h 1) b x0+( (h 0+h 1)k 1+b Γb C) bw+

b Γ(1+b ΛΦ+b ΦΘ)b v .

Since 0 ≤ ρ < 1  by assumption, it is possible to 

choose λ  sufficiently large so that 

 
ρ

1+ρ 2 = ρ+k 1a
-1(

1-a -(λ-1)N

a
λ-1

-1
)

+k 2a
-1(

1-a -(λ-1)N

a
λ-1

-1
) <  1 .

 (22)

Thus, we can easily show that, whenever all 

disturbances tend to zero, i.e., ε → 0, lim
k→∞

∥δu k( i)∥ λ
d
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=0  [15]. The equation (21) implies

 lim
k→∞

∥δu k(i) ∥ λ
d
 ≤

ε

1-(ρ 1+ρ 2)
.  (23)

Since ε  is bounded, (23) implies that the input error is 

bounded ∀k  in [0,N]. Using (19) and (23), we 

obtain the state error bound

lim
k→∞

∥δx k(i)∥ λ
d
≤ b x0+bBa

-1(
1-a - (λ-1)N

a
λ-1

-1
)

⋅
ε

1-(ρ 1+ρ 2)
+bw k 1

 (24)

and the output error bound

lim
k→∞

∥δy k(i)∥ λ
d
≤b c[b x0+bBa

-1(
1-a - (λ-1)N

a
λ-1

-1
)

⋅
ε

1-(ρ 1+ρ 2)
+bwk 1]+b v .

 (25)

Therefore, (24) and (25) implies that the state error and 

output error are bounded. This completes the proof. 

4. Simulation Example

In the following, we shall consider linear discrete- 

time system

[ ]x 1(i+1)
x 2(i+1)

= [ ]0.9953 0.0905
-0.0905 0.8144 [ ]x 1 (i)

x 2 (i)

+[ ]0.0047
0.0905

u( i)+[ ]0.02
0
w( i)

 (26)

y( i) = [ ]0 1 [ ]x 1 (i)
x 2 (i)

 +0.05 v( i),  (27)

where w( i)  and v( i)  are state disturbance and  

measurement noise that are random numbers whose 

elements are normally distributed with mean 0 and 

variance 1. We assume that the initial state error is  

normally distributed random numbers bounded by 0.1.   

  Also, suppose that the desired output trajectory is 

given by

 y d(i ) = 2 sin (0.04 π i )     i=1,2,⋯,50.  (28)

Γ  is chosen as 5.0 based on the condition 

∥I-ΓCB∥≤ρ < 1. Let us assume that Φ= -0.3. 

When Γ=5.0 , Φ=-0.3, Λ=0  and Θ=0 , the 

PD-type learning algorithm shows good performance as 

∑
50

i= 1
∣e 50( i)∣ = 5.22  and ∑

50

k= 1
∑
50

i= 1
∣e k( i )∣ = 361.67 . 

The result in Figure 1 shows the sum of error according 

to the parameters Λ  and Θ  at 50th iteration, that is, 

∑
50

i= 1
∣e 50( i)∣ . When Λ=-0.2  and Θ=0.1, we can 

obtain the best result as 1.735.  F igure 2 shows that 

the total sum of error, ∑
50

k= 1
∑
50

i= 1
∣e k( i )∣  is bounded 

and the best result is 263.65 when Λ=-0.3  and 

Θ=0.1. From this result, we can see that the 

2nd-order PD-type learning law is robust to state 

disturbance, measurement noise and initial state error. 

Also, we can find that the tracking performance can be 

improved by choosing the suitable parameters of learning 

law and depends on the bounds on initial state error, 

state disturbance and measurement noise.

F ig. 1 . ∑
50

i= 1
∣e 50( i )∣  under state disturbances, 

measurement noise and initial state error.

F ig. 2. ∑
50

k= 1
∑
50

i= 1
∣e k( i )∣ under state disturbances, 

measurement noise and  initial state error.

5. Conclusion

In this paper, the robustness property of 2nd-order  

ILC method for a class of linear and nonlinear 

discrete-time dynamic systems is investigated. It is 

proved that the bounds of input error, state error and 

output error depend on the bounds of  initial state error, 

state disturbance and measurement noise. Also, it is 

shown that, whenever initialization error, state 

disturbances and measurement noise tend to zero, the 
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state, output, and input error converge uniformly to zero. 

A numerical example is given to show the robustness of 

the 2nd-order ILC method for the discrete-time dynamic 

system. Robustness of the ILC method for nonlinear 

systems of more general form will be studied against 

initial state error, state disturbance and measurement 

noise.
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