• Title/Summary/Keyword: Dynamic Grid

Search Result 587, Processing Time 0.029 seconds

Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis (클라우드 컴퓨팅 관련 논문의 서지정보 및 인용정보를 활용한 연구 동향 분석: 사회 네트워크 분석의 활용)

  • Kim, Dongsung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.195-211
    • /
    • 2014
  • Cloud computing services provide IT resources as services on demand. This is considered a key concept, which will lead a shift from an ownership-based paradigm to a new pay-for-use paradigm, which can reduce the fixed cost for IT resources, and improve flexibility and scalability. As IT services, cloud services have evolved from early similar computing concepts such as network computing, utility computing, server-based computing, and grid computing. So research into cloud computing is highly related to and combined with various relevant computing research areas. To seek promising research issues and topics in cloud computing, it is necessary to understand the research trends in cloud computing more comprehensively. In this study, we collect bibliographic information and citation information for cloud computing related research papers published in major international journals from 1994 to 2012, and analyzes macroscopic trends and network changes to citation relationships among papers and the co-occurrence relationships of key words by utilizing social network analysis measures. Through the analysis, we can identify the relationships and connections among research topics in cloud computing related areas, and highlight new potential research topics. In addition, we visualize dynamic changes of research topics relating to cloud computing using a proposed cloud computing "research trend map." A research trend map visualizes positions of research topics in two-dimensional space. Frequencies of key words (X-axis) and the rates of increase in the degree centrality of key words (Y-axis) are used as the two dimensions of the research trend map. Based on the values of the two dimensions, the two dimensional space of a research map is divided into four areas: maturation, growth, promising, and decline. An area with high keyword frequency, but low rates of increase of degree centrality is defined as a mature technology area; the area where both keyword frequency and the increase rate of degree centrality are high is defined as a growth technology area; the area where the keyword frequency is low, but the rate of increase in the degree centrality is high is defined as a promising technology area; and the area where both keyword frequency and the rate of degree centrality are low is defined as a declining technology area. Based on this method, cloud computing research trend maps make it possible to easily grasp the main research trends in cloud computing, and to explain the evolution of research topics. According to the results of an analysis of citation relationships, research papers on security, distributed processing, and optical networking for cloud computing are on the top based on the page-rank measure. From the analysis of key words in research papers, cloud computing and grid computing showed high centrality in 2009, and key words dealing with main elemental technologies such as data outsourcing, error detection methods, and infrastructure construction showed high centrality in 2010~2011. In 2012, security, virtualization, and resource management showed high centrality. Moreover, it was found that the interest in the technical issues of cloud computing increases gradually. From annual cloud computing research trend maps, it was verified that security is located in the promising area, virtualization has moved from the promising area to the growth area, and grid computing and distributed system has moved to the declining area. The study results indicate that distributed systems and grid computing received a lot of attention as similar computing paradigms in the early stage of cloud computing research. The early stage of cloud computing was a period focused on understanding and investigating cloud computing as an emergent technology, linking to relevant established computing concepts. After the early stage, security and virtualization technologies became main issues in cloud computing, which is reflected in the movement of security and virtualization technologies from the promising area to the growth area in the cloud computing research trend maps. Moreover, this study revealed that current research in cloud computing has rapidly transferred from a focus on technical issues to for a focus on application issues, such as SLAs (Service Level Agreements).

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

A Numerical Simulation Study of Strong Wind Events at Jangbogo Station, Antarctica (남극 장보고기지 주변 강풍사례 모의 연구)

  • Kwon, Hataek;Kim, Shin-Woo;Lee, Solji;Park, Sang-Jong;Choi, Taejin;Jeong, Jee-Hoon;Kim, Seong-Joong;Kim, Baek-Min
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.617-633
    • /
    • 2016
  • Jangbogo station is located in Terra Nova Bay over the East Antarctica, which is often affected by individual storms moving along nearby storm tracks and a katabatic flow from the continental interior towards the coast. A numerical simulation for two strong wind events of maximum instantaneous wind speed (41.17ms1) and daily mean wind speed (23.92ms1) at Jangbogo station are conducted using the polar-optimized version of Weather Research and Forecasting model (Polar WRF). Verifying model results from 3 km grid resolution simulation against AWS observation at Jangbogo station, the case of maximum instantaneous wind speed is relatively simulated well with high skill in wind with a bias of 3.3ms1 and standard deviation of 5.4ms1. The case of maximum daily mean wind speed showed comparatively lower accuracy for the simulation of wind speed with a bias of -7.0 m/s and standard deviation of 8.6ms1. From the analysis, it is revealed that the each case has different origins for strong wind. The highest maximum instantaneous wind case is caused by the approach of the strong synoptic low pressure system moving toward Terra Nova Bay from North and the other daily wind maximum speed case is mainly caused by the katabatic flow from the interiors of Terra Nova Bay towards the coast. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation and investigation of high wind events at Jangbogo station. However, additional efforts in utilizing the high resolution terrain is required to reduce the simulation error of high wind mainly caused by katabatic flow, which is received a lot of influence of the surrounding terrain.

Using Google Earth for a Dynamic Display of Future Climate Change and Its Potential Impacts in the Korean Peninsula (한반도 기후변화의 시각적 표현을 위한 Google Earth 활용)

  • Yoon, Kyung-Dahm;Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.275-278
    • /
    • 2006
  • Google Earth enables people to easily find information linked to geographical locations. Google Earth consists of a collection of zoomable satellite images laid over a 3-D Earth model and any geographically referenced information can be uploaded to the Web and then downloaded directly into Google Earth. This can be achieved by encoding in Google's open file format, KML (Keyhole Markup Language), where it is visible as a new layer superimposed on the satellite images. We used KML to create and share fine resolution gridded temperature data projected to 3 climatological normal years between 2011-2100 to visualize the site-specific warming and the resultant earlier blooming of spring flowers over the Korean Peninsula. Gridded temperature and phonology data were initially prepared in ArcGIS GRID format and converted to image files (.png), which can be loaded as new layers on Google Earth. We used a high resolution LCD monitor with a 2,560 by 1,600 resolution driven by a dual link DVI card to facilitate visual effects during the demonstration.

In-Plane Extensional Buckling Analysis of Curved Beams under Uniformly Distributed Radial Loads Using DQM (등분포하중 하에서 미분구적법(DQM)을 이용한 곡선 보의 내평면 신장 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.265-274
    • /
    • 2018
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has prompted studies directed toward the development of an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have been obtained traditionally using standard finite difference or finite element methods. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under the conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as the excessive use of storage due to the conditions of complex geometry and loading. The in-plane buckling of curved beams considering the extensibility of the arch axis was analyzed under uniformly distributed radial loads using the DQM. The critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with the precise results by other methods for cases, in which they were available. The DQM, using only a limited number of grid points, provided results that agreed very well (less than 0.3%) with the exact ones. New results according to diverse variations were obtained, showing the important roles in the buckling behavior of curved beams, and can be used in comparisons with other numerical solutions or with experimental test data.

Development of Real-time based Hardware-In-Loop Simulator for performance evaluation of wind turbine control system (풍력발전기 제어시스템 성능평가를 위한 실시간 처리 기반의 Hardware-In-Loop 시뮬레이터 개발)

  • Kim, Dae-Jin;Ryu, Kyung-Sang;Kim, Byungki;Jang, Moon-Seok;Ko, Hee-Sang;Yoo, Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.794-805
    • /
    • 2017
  • This paper proposes a Hardware-In-Loop(HIL) Simulator for a Wind Turbine and an operational control algorithm to evaluate the performance of a wind turbine control system. It provides not only for the validation of the control logics, safety functions and H/W failure, but also for the high reliability of the wind turbines (by reducing/and the reduction of the operating expense(OPEX) through performance evaluation tests with complex scenarios. On the other hand, the proposed simulator uses MATLAB, CODER, and the PLC library to operate in synchronization with the hardware, and a real-time processing-based wind turbine module including a dynamic model and control system, wind module, grid module and host PC to manage the HIL-simulator. Several experiments were carried out under the above concept to verify the effectiveness of the proposed WT HIL-simulator.

LES Investigation on The Cryogenic Nitrogen Injection of Swirl Injector Under Supercritical Envionment (초임계 환경에서 와류형 분사기의 극저온 질소 분사 LES 연구)

  • Kang, JeongSeok;Heo, JunYoung;Sung, Hong-Gye;Yoon, YoungBin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.343-351
    • /
    • 2016
  • Cryogenic spray characteristics of a nitrogen swirl injector operating in supercritical environment have been numerically investigated. By comparing the equation of states(EOS) used for supercritical condition, SRK EOS was applied to predict the nitrogen thermodynamic property under supercritical environment. A Chung's method was implemented for the calculation of viscosity and conductivity and Takahashi's correlation based on Fuller's Theorem was implemented for the calculation of diffusion coefficient. By injecting the nitrogen with 5 bar differential pressure into 50 bar chamber filled with nitrogen, numerical simulation has been conducted. The dynamic Smagorinsky sub-grid scale (SGS) model has been compared with the algebraic Smagorinsky SGS model using FFT frequency analysis. The instability at the liquid film and gas core inside injector and the propagation of pressure oscillation into the injector has been investigated. The spreading angle of swirl injector obtained by numerical calculation has been validated with experimental result.

The Analysis of Mesoscale Circulations Characteristics Caused by the Evaporation-Efficiency of Water Retention Pavement (보수성 도로 포장재의 증발효율 변화에 의한 중규모 순환장 특성 분석)

  • Kim, In-Su;Lee, Soon-Hwan;Kim, Hae-Dong;Suh, Young-Chan
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.709-720
    • /
    • 2009
  • Field observation and numerical experiments were conducted to understand the impact of water retention pavement on the surface heat budget and on the regional circulation. The numerical model applied in this study is the atmospheric dynamic model Local Circulation Model (LCM) with two dimensional grid system, and a field observation was carried out under the clear sky and calm conditions of the weather on 19 July 2007. In the field observation, the maximum value of surface temperature on pavement covered with water retention material reached the 41.2C at 1430 LST and the values was lower for 16.1C than that of asphalt without the material. The Case BET03 assumed to be 0.3 for the surface evaporation efficiency was in good agreement with the observation and its sensible and latent heat fluxes were numerically estimated to be 229 and 227 W/m2, respectively. Results of the numerical experiments demonstrated that the water retention pavement tends to induce the increase of latent heat flux associated with the lower surface temperature and mixing height during the daytime. Discontinuity of latent heat caused by the water retention pavement also tends to promote the development of mesoscale circulation called as land-land breeze or country breeze.

The Perceived Causal Structure Model on Stress Experienced by Nursing Students during Clinical Practice (간호학생의 임상실습스트레스에 관한 인지적 인과구조모형)

  • Park, Mi-Young
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.10 no.1
    • /
    • pp.54-63
    • /
    • 2004
  • The purpose of this study is to identify the factors that influence stress experienced by nursing students and to provide a perceived causal structure model among these variables. The ultimate goal of this study is to develop efficient guidance to clinical nursing education in this population. This study intends to apply perceived causal structure: network analysis method which was developed by Kelly(1983), and has been applied in nursing research. This method is selected to show dynamic relationship of stressor using network method. Data was collected from convenient sample of 186 junior college nursing students who had the clinical practice experience during 10 weeks. Data collection and analysis was conducted in 2 steps from December, 9, 2002 to February, 8, 2003. Step 1.: Data was collected using literature review(10 articles) to identify the causes of stress. Nine causes of stress were extracted. Step 2.: As perceived casual structure network study, data was collected using questionnaires which included 9 extracted cause and stress. The questionnaire contained a 10 X 10 grid table with 10 causes and effects printed. In network analysis, 'Yes' was scored as 1, 'No' was scored as 0, and the mean(maximum 1, minimum 0) was calculated. Construction of the network under inductive eliminative analysis which stopped the construction of the network when the consensual agreement level dropped near 50% was proceeded by adding causes in order of the mean rating level. In this study, construction of the final network was stopped by consensual agreement level of 52% of the total subjects. The results are summarized as follows : Step 1: Investigation of the causes of stress ; The extracted causes of stress from quality data was identified 9 categories ; negative nurse, lack of clinical practice opportunity, ambiguous role, negative patient, lack of nursing knowledge and skill, difficult of personal relations, inefficient clinical practice guidance, gap of theory and practice, lack of support. Step 2 : Construction of the perceived causal structure model ; 1) The most central cause of stress is ambiguous role in the systems of causation. 2) The distal cause of stress is inefficient clinical practice guidance 3) The causes that have a number of outgoing link are negative nurse, ambiguous role. 4) The causes that have a number of incoming link are ambiguous role, gap of theory- practice, lack of clinical practice opportunity, lack of nursing knowledge- skill. 5) There is a mutual relationship between stress and difficult of personal relations, stress and ambiguous role, ambiguous role and negative nurse, ambiguous role and lack of clinical practice opportunity, ambiguous role and lack of nursing knowledge-skill, lack of nursing knowledge-skill and gap of theory- practice. In conclusion, the network suggests that the first centre cause is related on ambiguous role and the second on negative nurse, inefficient clinical practice guidance in the systems of causation

  • PDF

Hilbert Cube for Spatio-Temporal Data Warehouses (시공간 데이타웨어하우스를 위한 힐버트큐브)

  • 최원익;이석호
    • Journal of KIISE:Databases
    • /
    • v.30 no.5
    • /
    • pp.451-463
    • /
    • 2003
  • Recently, there have been various research efforts to develop strategies for accelerating OLAP operations on huge amounts of spatio-temporal data. Most of the work is based on multi-tree structures which consist of a single R-tree variant for spatial dimension and numerous B-trees for temporal dimension. The multi~tree based frameworks, however, are hardly applicable to spatio-temporal OLAP in practice, due mainly to high management cost and low query efficiency. To overcome the limitations of such multi-tree based frameworks, we propose a new approach called Hilbert Cube(H-Cube), which employs fractals in order to impose a total-order on cells. In addition, the H-Cube takes advantage of the traditional Prefix-sum approach to improve Query efficiency significantly. The H-Cube partitions an embedding space into a set of cells which are clustered on disk by Hilbert ordering, and then composes a cube by arranging the grid cells in a chronological order. The H-Cube refines cells adaptively to handle regional data skew, which may change its locations over time. The H-Cube is an adaptive, total-ordered and prefix-summed cube for spatio-temporal data warehouses. Our approach focuses on indexing dynamic point objects in static spatial dimensions. Through the extensive performance studies, we observed that The H-Cube consumed at most 20% of the space required by multi-tree based frameworks, and achieved higher query performance compared with multi-tree structures.