• Title/Summary/Keyword: Dynamic Graph

Search Result 276, Processing Time 0.024 seconds

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석

  • 장진희;한창수;김정덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.628-634
    • /
    • 1995
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformer which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backash and friction. Therefore a dynamic modeling and stste sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensitivity snalysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensitivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design based on the results on the results of dynamic and state sensitivity.

  • PDF

physical structure of dynamic systems to implement a given system function (시스템함수를 실현하는 동적시스템의 물리구조에 관하여)

  • 박전수;김종식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.294-298
    • /
    • 1996
  • This paper presents an attempt to find the physical structure of dynamic systems which achieves the behavior of a given system function. The scheme pursued by te paper would be regarded as synthesizing dynamic systems, and a method to synthesize them analytically is proposed by means of bond graph prototypes. The method proposed adopts several concepts used to synthesize networks in the electrical field, but yet demonstrates its own strengths such as the freedom from the causality assignment and determination of junction types. Also, it is shown that this method has further advantages in reticulating a given specification into feedforward and feedback expansions relative to electrical network synthesis and the method introduced by Redfield. The proposed method is examined through an example to trace the outline of the analytical synthesis of dynamic systems using bond graph prototypes.

  • PDF

A study on Face Recognition Technology in the Dynamic Link Architecture (동적 링크 구조상에서의 얼굴 인식 기술에 관한 연구)

  • Lee, Seoung-Cheol;Kim, Hyun-Sool;Kim, Ji-Hun;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3236-3238
    • /
    • 1999
  • This paper proposes a new face recognition technique in the dynamic link architecture which shows robustness against size variation and distortion. The face recognition technique in the dynamic link architecture so far was not appropriate for the recognition of various size of faces because of the fixed size of the graph and the fixed value of a of the Gabor filter not considering the size of the face. The proposed face recognition algorithm can represent the input facial image by a suitable size of labeled graph, and it can also adjust the dilation width and the height of the vibrating amplitude of the Gabor filter, thus face recognition in the dynamic link architecture is even applicable regardless of the size of the face.

  • PDF

A Modeling of Proportional Pressure Control Valve and its Control (비례전자 감압밸브의 모델링과 제어)

  • Yang, K.U.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.71-77
    • /
    • 2002
  • In this study, a dynamic model of proportional pressure control valve using the bond graph and a predictive controller are presented in the form of dynamic matrix control which is concerned with a design method of digital controller for the electro hydraulic servo system. The bond graph can be utilized for all types of systems which involve power and energy, and it is applied to a propotional pressure control valve in this study. Recently, many researchers suggested that better control performance could be obtained by means of the predictive controls with future reference input, future control output and future control error. The Predictive controller is very practical because the controller can be easily applicable to a personal computer or a microprocessor. This study investigates through numerical simulations that hydraulic system with the predictive controller shows very good control performances.

  • PDF

A Graph Search Method for Shortest Path-Planning of Mobile Robots (자율주행로봇의 최소경로계획을 위한 그래프 탐색 방법)

  • You, Jin-O;Chae, Ho-Byung;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.184-186
    • /
    • 2006
  • We propose a new method for shortest path planning of mobile robots. The topological information of the graph is obtained by thinning method to generate the collision-free path of robot. And the travelling path is determined through hierarchical planning stages. The first stage generates an initial path by use of Dijkstra's algorithm. The second stage then generates the final path by use of dynamic programming (DP). The DP adjusts the intial path to reduce the total travelling distance of robot. Simulation results are presented to verify the performance of the proposed method.

  • PDF

Shortest Path-Finding Algorithm using Multiple Dynamic-Range Queue(MDRQ) (다중 동적구간 대기행렬을 이용한 최단경로탐색 알고리즘)

  • Kim, Tae-Jin;Han, Min-Hong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.179-188
    • /
    • 2001
  • We analyze the property of candidate node set in the network graph, and propose an algorithm to decrease shortest path-finding computation time by using multiple dynamic-range queue(MDRQ) structure. This MDRQ structure is newly created for effective management of the candidate node set. The MDRQ algorithm is the shortest path-finding algorithm that varies range and size of queue to be used in managing candidate node set, in considering the properties that distribution of candidate node set is constant and size of candidate node set rapidly change. This algorithm belongs to label-correcting algorithm class. Nevertheless, because re-entering of candidate node can be decreased, the shortest path-finding computation time is noticeably decreased. Through the experiment, the MDRQ algorithm is same or superior to the other label-correcting algorithms in the graph which re-entering of candidate node didn’t frequently happened. Moreover the MDRQ algorithm is superior to the other label-correcting algorithms and is about 20 percent superior to the other label-setting algorithms in the graph which re-entering of candidate node frequently happened.

  • PDF

Dynamic Task Assignment Using A Quasi-Dual Graph Model (의사 쌍대 그래프 모델을 이용한 동적 태스크 할당 방법)

  • 김덕수;박용진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.6
    • /
    • pp.62-68
    • /
    • 1983
  • We suggest a Quasi- dual graph model in consideration of dynamic module assignment and relocation to assign task optimally to two processors that have different processing abilities. An optimal module partitioning and allocation to minimize total processing cost can be achieved by applying shortest-path algorithm with time complexity 0(n2) on this graph model.

  • PDF

Topology Graph Generation Based on Link Lifetime in OLSR (링크 유효시간에 따른 OLSR 토폴로지 그래프 생성 방법)

  • Kim, Beom-Su;Roh, BongSoo;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.219-226
    • /
    • 2019
  • One of the most widely studied protocols for tactical ad-hoc networks is Optimized Link State Routing Protocol (OLSR). As for OLSR research, most research work focus on reducing control traffic overhead and choosing relay point. In addition, because OLSR is mostly dependent on link detection and propagation, dynamic Hello timer become research challenges. However, different timer interval causes imbalance of link validity time by affecting link lifetime. To solve this problem, we propose a weighted topology graph model for constructing a robust network topology based on the link validity time. In order to calculate the link validity time, we use control message timer, which is set for each node. The simulation results show that the proposed mechanism is able to achieve high end-to-end reliability and low end-to-end delay in small networks.

A Study on the Fundamental Theorem of Calculus : Focused on the Relation between the Area Under Time-velocity Graph and Distance (미적분의 기본정리에 대한 고찰 - 속도 그래프 아래의 넓이와 거리의 관계를 중심으로 -)

  • Joung, Youn-Joon;Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.1
    • /
    • pp.123-142
    • /
    • 2009
  • Dynamic context is considered as a source for intuitive understanding on the calculus. The relation between the area under time-velocity graph and distance is the base of the dynamic contexts which are treated in the integral calculus. The fundamental theorem of calculus has originated in dynamic contexts. This paper investigated the fundamental theorem of calculus via the relation between the area under time-velocity graph and distance. And we analyzed mathematics textbooks and the understanding of students. Finally we suggest some proposal for the teaching of the fundamental theorem of calculus.

  • PDF

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.