• Title/Summary/Keyword: Dynamic Finite Element Analysis

Search Result 2,347, Processing Time 0.033 seconds

Wave Response Analysis for Pontoon-type Pier: Very Large Floating Structure (폰툰형 초대형 부유체식 부두의 파랑응답해석)

  • Lee, Sang-Do;Park, Sung-Hyeon;Kong, Gil-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • In this study, we proposed a pier of pontoon-type, "Very Large Floating Structure" (VLFS), with the length of 500m, breadth of 200 m and height of 2 m in Yeosu domestic port. Since this structure ought to endure wave loads for long periods at sea, it is essential to analyze the wave response characteristics. Direct-method is used to analyze the fluid-structure problem and the coupled motion of equation is used to obtain response results. The structural part is calculated by using finite element method (FEM) and the fluid part is analyzed by using boundary element method (BEM). Dynamic responses caused by the elastic deformation and rigid motion of structure are analyzed by numerical calculation. To investigate response characteristics of the pier in regular waves, several factors such as the wavelength, water depth, wave direction and flexural rigidity of structure are considered. As a result, wave response of pier changed at the point of $L/{\lambda}$ 1.5 and represented the torsional phenomenon according to the various incident waves. And the responses showed increasing tendency as the water depths increase at the incident point in case of $L/{\lambda}=8.0$ and peak point of vertical displacement amplitude moved from side to side as the flexural rigidity of structure changes.

Dynamic Characteristics of Truss-Type Lift Gate According to Installation Direction (트러스형 리프트 게이트의 설치방향에 따른 진동 특성)

  • Lee, Seong-Haeng;Kong, Bo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.120-127
    • /
    • 2016
  • This study examined the dynamic characteristics of the gate to identify the optimal gate installation direction according to the installation direction. A 1:31 scale model was constructed for a 47.5m prototype gate using acrylic. The scaled weights were tuned by adding lead weights. The first step was to measure the natural frequencies of the model gates, and compare them with finite-element analysis of the prototypes as a calibration. The scaled model was tested in a 1.6 m wide concrete flume for two orientations to determine the effects of the gate orientation on structural vibrations. Vertical vibrations were measured under a range of operational conditions, including a range of bottom opening heights and different upstream and downstream water levels. For large bottom opening heights in the normal direction, relatively large vibrations were induced by vortices shed at the plate bottom that would strike the horizontal truss member. This phenomenon was avoided in the reverse direction. For small bottom opening heights in the normal direction, these vibrations were caused by a suction force that developed at the gate bottom. The gate model in the reverse direction was preferred because of its low overall vibrational response under general gate opening and flow level combinations.

A Study of Torsional Vibrations of Suspended Bridges (현수교(懸垂橋)의 비틀림진동(振動)에 관한 연구(硏究))

  • Min, Chang Shik;Kim, Saeng Bin;Son, Seong Yo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.27-37
    • /
    • 1983
  • A method of dynamic analysis is developed for torsional free vibrations of elliptical-box girder type or stiffening truss system suspension bridge. In this study, the method based on a finite element technique using a digital computer, is illustrated by two numerical examples, the Namhae Bridge which is located in Kyungsang nam-do opened on June, 1973, and the Mt. Chunma Bridge is simple span pedestrian's suspension bridge with lateral bracing system in Mt. Chunma, Kyungki-do, are used. In general, dynamic modes of complex suspension bridges are three-dimensional in form, i.e., coupling between vertical and torsional motions. However, introduced that amplitudes of oscillation are infinitesimal for coincidence with the purpose of it's use, thereupon, the torsional vibration analyses are treated without coupling terms. A sufficient number of natural frequencies and mode shapes for torsional free vibration are presented in this paper. In the case of Mt. Chunma Bridge, the natural frequencies and periods are computed with and without reinforcement, respectively, and compared their discrepancies. The influence of the auxiliary reinforcing cables is prevailing in the first few modes, namely, 1st and 2nd in symmetric and 1st, 2nd and 3rd in antisymmetric vibration, and conspicuous in the symmetric compared with the antisymmetric motion, but in the higher modes, this kind of simple accessory elucidates rether converse effects. In the Namhae Bridge, the results are compared with the Manual's obtained by wind tunnel test. It reveals commendable agreement.

  • PDF

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

A Study on the Engineering Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Finite Element Analysis (실규모 현장시험 및 유한요소해석을 통한 강관매입말뚝의 공학적 거동에 대한 연구)

  • Kim, Jeong-Sub;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.5-16
    • /
    • 2018
  • In the current study, the engineering behaviour of prebored and precast steel pipe piles was examined from a series of full-scale field measurements by conducting static pile load tests, dynamic pile load tests (EOID and restrike tests) and Class-A and Class-C1 type numerical analysis. The study includes the pile load - settlement relations, allowable pile capacity and shear stress transfer mechanism. Compared to the allowable pile capacity obtained from the static pile load tests, the dynamic pile load tests and the numerical simulation showed surprisingly large variations. Overall among these the restrike tests displayed the best results, however the reliability of the predictions from the numerical analysis was lower than those estimated from the dynamic pile load tests. The allowable pile capacity obtained from the EOID tests and the restrike tests indicated 20.0%-181.0% (avg: 69.3%) and 48.2%-181.1% (avg: 92.1%) of the corresponding measured values from the static pile loading tests, respectively. Furthermore, the computed results from the Class-A type analysis showed the largest scatters (37.1%-210.5%, avg: 121.2%). In the EOID tests, a majority of the external load were carried by the end bearing pile capacity, however, similar skin friction and end bearing capacity in magnitude were mobilised in the restrike tests. The measured end bearing pile capacity from the restrike tests were smaller than was measured from the EOID tests. The present study has revealed that if the impact energy is not sufficient in a restrike test, the end bearing pile capacity most likely will be underestimated. The shear stresses computed from the numerical analysis deviated substantially from the measured pile force distributions. It can be concluded that the engineering behaviour of the pile is heavily affected if a slime layer exists near the pile tip, and that the smaller the stiffness of the slime and the thicker the slime, the greater the settlement of the pile.

Development of Abrasive Film Polishing System for Cover-Glass Edge using Multi-Body Dynamics Analysis (다물체 동역학 해석을 이용한 커버글라스 Edge 연마용 Abrasive Film Polishing 시스템 개발)

  • Ha, Seok-Jae;Cho, Yong-Gyu;Kim, Byung-Chan;Kang, Dong-Seong;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7071-7077
    • /
    • 2015
  • In recently, the demand of cover-glass is increased because smart phone, tablet pc, and electrical device has become widely used. The display of mobile device is enlarged, so it is necessary to have a high strength against the external force such as contact or falling. In fabrication process of cover-glass, a grinding process is very important process to obtain high strength of glass. Conventional grinding process using a grinding wheel is caused such as a scratch, chipping, notch, and micro-crack on a surface. In this paper, polishing system using a abrasive film was developed for a grinding of mobile cover-glass. To evaluate structural stability of the designed system, finite element model of the polishing system is generated, and multi-body dynamic analysis of abrasive film polishing machine is proposed. As a result of the analysis, stress and displacement analysis of abrasive film polishing system are performed, and using laser displacement sensor, structural stability of abrasive film polishing system is confirmed by measuring displacement.

Analytical and Experimental Study on the Quality Stability of Multi Roll Forming Process (멀티 롤 포밍 공정의 품질 안정성에 대한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Han, Chang-Woo;Ryu, Kyung-Jin;Kang, Hae-Dong;Kim, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6977-6984
    • /
    • 2015
  • It is faced with the necessity of multi roll forming process of the ball slide rail which is made by adding the separate manufacturing processes, piercing, bending, trimming, to the roll forming process of a continuous plastic deformation, to improve the quality. However, the vibration and noise of the press machine in this process leads to the quality degradation of slide rail manufactured in this process. In this study, the roll was designed considering the optimal strain rates by the roll forming program with finite element method. And to estimate the static stability of the multi process the Von-Mises stress and deformation on the press was calculated with a structural analysis program. Also, to avoid driving systems in the resonance region their natural frequencies in the 1st and 2nd mode were calculated through the modal analysis. To verify its dynamic stability improvement the magnitudes of noise and vibration in the existing and studied system were compared using a microphone and accelerometers. And the widths and surface roughnesses of the rails which had been produced in the existing and studied process were measured. Therefore, it is known that multi roll forming process is stable in the analytical and experimental study.

An equivalent model for the seismic analysis of high-rise shear wall apartments (고층 벽식 아파트의 지진해석을 위한 등가모델)

  • Kim, Tae-Wan;Park, Yong-Koo;Kim, Hyun-Jung;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.11-21
    • /
    • 2007
  • Currently in the country, the necessity of seismic analyses is increasing due to the increase of demand and interest in seismic design. Especially, shear wall apartments are constructed mostly for a residental building so seismic analyses for the apartment are actively executed. For the seismic analysis of the shear wall apartment, it may be not efficient in time and effort to model the entire structure by a finite element mesh. Therefore, an equivalent model is needed to simulate the dynamic behavior of the structure by decreasing the number of degrees of freedom. In this study, a method to form an equivalent model that is simple and easy to use was proposed utilizing effective mass coefficient that is highly correlated to mode shape of the structure. This equivalent model was obtained by replacing a shear wall structure with an equivalent frame structure having beams and columns. This model can be used very effectively when excessive seismic analyses are necessary in a short period because it can be operated in any commercial program and reduce the analysis time. Also, it can model floor slabs so it can represent the actual behavior of shear wall apartments. Furthermore, it is very excellent since it can represent the asymmetry of the structure.

Tension Estimation for Hanger Cables on a Suspension Bridge Using Image Signals (영상신호를 이용한 현수교 행어케이블의 장력 추정)

  • Kim, Sung-Wan;Yun, Da-Woon;Park, Si-Hyun;Kong, Min-Joon;Park, Jae-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.112-121
    • /
    • 2020
  • In suspension bridges, hanger cables are the main load-supporting members. The tension of the hanger cables of a suspension bridge is a very important parameter for assessing the integrity and safety of the bridge. In general, indirect methods are used to measure the tension of the hanger cables of a suspension bridge in traffic use. A representative indirect method is the vibration method, which extracts modal frequencies from the cables' responses and then measures the cable tension using the cables' geometric conditions and the modal frequencies. In this study, the image processing technique is applied to facilitate the estimation of the dynamic responses of the cables using the image signal, for which a portable digital camcorder was used due to its convenience and cost-efficiency. Ambient vibration tests were conducted on a suspension bridge in traffic use to verify the validity of the back analysis method, which can estimate the tension of remote hanger cables using the modal frequencies as a parameter. In addition, the tension estimated through back analysis method, which was conducted to minimize the difference between the modal frequencies calculated using finite element analysis of the hanger cables and the measured modal frequencies, was compared with that measured using the vibration method.

Optimal Mesh Size in Three-Dimensional Arbitrary Lagrangian-Eulerian Method of Free-air Explosions (3차원 Arbitrary Lagrangian-Eulerian 기법을 사용한 자유 대기 중 폭발 해석의 최적 격자망 크기 산정)

  • Yena Lee;Tae Hee Lee;Dawon Park;Youngjun Choi;Jung-Wuk Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.355-364
    • /
    • 2023
  • The arbitrary Lagrangian-Eulerian (ALE) method has been extensively researched owing to its capability to accurately predict the propagation of blast shock waves. Although the use of the ALE method for dynamic analysis can produce unreliable results depending on the mesh size of the finite element, few studies have explored the relationship between the mesh size for the air domain and the accuracy of numerical analysis. In this study, we propose a procedure to calculate the optimal mesh size based on the mean squared error between the maximum blast pressure values obtained from numerical simulations and experiments. Furthermore, we analyze the relationship between the weight of explosive material (TNT) and the optimal mesh size of the air domain. The findings from this study can contribute to estimating the optimal mesh size in blast simulations with various explosion weights and promote the development of advanced blast numerical analysis models.