• 제목/요약/키워드: Dynamic Finite Element

검색결과 2,902건 처리시간 0.031초

Adaptive Finite Element Mesh Generation Schemes for Dynamic Structural Analyses

  • Yoon, Chong-Yul
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.23-28
    • /
    • 2010
  • 구조물의 방재를 위해서 구조물의 효율적인 유지관리는 필수적이며, 여기서 신뢰 있는 구조물의 동적해석은 중요한 역할을 한다. 유한요소법은 구조해석법으로 가장 많이 사용되는 방법으로 자리 잡고 있으며, 요소와 요소망이 제대로 선택되면 신뢰 있는 해석 결과를 출력한다. 시간 영역 동적해석에 유한요소법을 사용하려면 각 시간 단계에서 요소망을 재형성할 필요가 생길 수 있는데, 여기에 연산 시간 측면에서 효율적인 적응적 요소망 전략을 사용하면 편리하다. 본 연구는 시간영역 동적해석에서 전단계 해석 결과를 사용하여 계산된 대표 변형률 값을 오차 평가하는데 사용하고, 요소 세분화는 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 효율적으로 계산하는 적응적 요소망 형성 전략을 제시한다. 적용한 캔틸레버보의 예제를 통하여 정확성과 연산 효율성을 검증하였고 나아가 방법의 간단함이 지진 하중, 풍하중 등에 의한 복잡한 구조 동적 해석에도 효율적으로 사용될 수 있는 것을 보여 준다.

비적합 유한요소망에 적용가능한 유체-구조물 연결 요소 (Acoustic Interface Element on Nonconformal Finite Element Mesh for Fluid-Structure Interaction Problem)

  • 조정래;이진호;조근희;윤혜진
    • 한국지진공학회논문집
    • /
    • 제27권4호
    • /
    • pp.163-170
    • /
    • 2023
  • In the fluid-structure interaction analysis, the finite element formulation is performed for the wave equation for dynamic fluid pressure, and the dynamic pressure is defined as a degree of freedom at the fluid nodes. Therefore, to connect the fluid to the structure, it is necessary to connect the degree of freedom of fluid dynamic pressure and the degree of freedom of structure displacement through an interface element derived from the relationship between dynamic pressure and displacement. The previously proposed fluid-structure interface elements use conformal finite element meshes in which the fluid and structure match. However, it is challenging to construct conformal meshes when complex models, such as water purification plants and wastewater treatment facilities, are models. Therefore, to increase modeling convenience, a method is required to model the fluid and structure domains by independent finite element meshes and then connect them. In this study, two fluid-structure interface elements, one based on constraints and the other based on the integration of nonsmooth functions, are proposed in nonconformal finite element meshes for structures and fluids, and their accuracy is verified.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

선박 장비 받침대의 동강성 평가를 위한 유한요소 모델링과 해석 인자에 관한 연구 (A Study on the Finite Element Modeling and Analytical Parameters for the Dynamic Stiffness Evaluation of Shipboard Equipment Foundations)

  • 김국현;김윤환;최태묵;최성원;조대승
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.808-812
    • /
    • 2010
  • This paper studies the finite element modeling and analytical parameters for the numerical evaluation of dynamic stiffness of large foundation for shipboard equipments such as marine diesel engine. For the purpose, numerical method and procedure to evaluate the dynamic stiffness are established based on the impact test method, which are applied for the dynamic stiffness evaluation of a real diesel generator foundation of ship. Numerical investigations compared with the measured data are carried out to evaluate the effects of modeling ranges of ship substructure, finite element sizes, lower support structures and damping coefficients. From the results, modeling and analytical parameters for proper evaluation of dynamic stiffness of large foundation of shipboard equipment are suggested.

대공간 구조 시스템의 동적 해석을 위한 스펙트럴 요소법의 적용성 평가 (The evaluation of applicability of spectral element method for the dynamic analysis of the spatial structures)

  • 한상을;이상주;조준영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.789-794
    • /
    • 2007
  • Recently, the necessity of efficient and exact method to analyze structures is increasing with the importance of the seismic analysis. But the finite element method used in many field do not give the exact solution unless the length of the element is very short enough to represent the deformation of the element. Because the amount of computer calculation increase with the increasing of the number of degree of freedoms, the finite element method for the exact dynamic analysis of structures would not be efficient. To solve these problems, spectral clement method combined spectral method using the principle of wave mechanics and finite element method for the analysis of discrete models is applied to evaluate the behavior of the spatial structures. As a result of analysis. it becomes clear that the spectral element method is faster and more exact than the finite clement method.

  • PDF

3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석 (Static Non-linear Finite Element Analysis of Spatial Cable Networks)

  • 김문영;김남일;안상섭
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.179-190
    • /
    • 1998
  • 두개의 케이블요소를 이용한 3차원 케이블망의 정적 비선형 유한요소해석기법을 제시한다. 먼저, 공간 트러스요소와 탄성현수선 케이블요소(elastic catenary cable element)의 접선강도행렬과 질량행렬을 유도하는 과정을 간략히 요약한다. 지점 변위를 일으키고 자중을 받는 케이블망의 초기평형 상태를 결정하기 위하여, Newton-Raphson 반복법에 근거한 하중증분법과 현수케이블요소를 적용하는 경우에 viscous damping을 고려한 dynamic relaxation법을 제시한다. 또한 초기의 정적평형상태를 기준으로 추가하중에 대한 케이블망의 정적 비선형해석을 수행한다. 지점변위와 외력을 받는 케이블 구조에 대하여 비선형해석을 수행하고, 해석결과들을 기존의 문헌의 결과와 비교, 검토하므로써 본 논문에서 제시한 이론 및 해석방법의 타당성을 입증한다.

  • PDF

압축된 고무재료의 정적 변형 해석과 동특성 예측 (Static Deformation Analysis and Dynamic Characteristics Predicton of Compressed Rubber Materials)

  • 김국원;임종락;손희기;안태길
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.472-476
    • /
    • 1999
  • The effect of static preload on the dynamic properties of rubber materials is rather important, especially when good isolation characteristics are required at high frequencies. However, there are still few papers for dynamic characteristics of compressed rubber components. It was demonstrated in reference (4) that for bonded rubber material of a cylindrical shape, a simplified theory equation between linear dynamic and nonlinear static behavior of rubber material was useful to predict their combined effects. This paper presents the second part of the study. It is confirmed that for the compressed rubber material, the stress can be factored into a function of frequency and a function of strain(stretch). The finite element methodis applied to analyze non-linear large deformation of rubber material and its results are compared with those of a simplified theory equation. The predicted dynamic material properties based on non-linear static finite element analyses have a good agreement of experimental results and those based on simplified theory equation.

  • PDF

Geometrically non-linear dynamic analysis of plates by an improved finite element-transfer matrix method on a microcomputer

  • Chen, YuHua
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.395-402
    • /
    • 1994
  • An improved finite element-transfer matrix method is applied to the transient analysis of plates with large displacement under various excitations. In the present method, the transfer of state vectors from left to right in a combined finite element-transfer matrix method is changed into the transfer of generally incremental stiffness equations of every section from left to right. Furthermore, in this method, the propagation of round-off errors occurring in recursive multiplications of transfer and point matrices is avoided. The Newmark-${\beta}$ method is employed for time integration and the modified Newton-Raphson method for equilibrium iteration in each time step. An ITNONDL-W program based on this method using the IBM-PC/AT microcomputer is developed. Finally numerical examples are presented to demonstrate the accuracy as well as the potential of the proposed method for dynamic large deflection analysis of plates with random boundaries under various excitations.

외연적 유한요소법을 이용한 패턴 타이어에 대한 돌기물 통과시의 동적 특성 해석 (Transient Dynamic Analysis of a Patterned Tire Rolling over a Cleat with an Explicit Finite Element Program)

  • 김기운;정현성;범현규
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.164-170
    • /
    • 2003
  • The finite element analysis of tires has been conventionally performed by either neglecting tread pattern or modeling only circumferential grooves. Besides, the tire analysis has been mainly limited to static or steady state rolling analysis. In this paper, a transient dynamic analysis of a patterned tire rolling over a cleat with an explicit finite element program is presented. The patterned tire with detailed tread blocks is modeled by a systematic mesh generation procedure, in which tire body and tread pattern meshes are separately generated in the beginning and then both meshes are combined by the tie constraint method. The cleat impact analysis is conducted by using both the patterned tire and the smooth tire models to predict the cleat enveloping characteristics. It is seen that the analysis results of the patterned tire model are in a good agreement with the experimental results.

스퍼기어와 헬리컬기어의 동적 특성 비교 (Comparison of Dynamic Characteristics of Spur Gears and Helical Gears)

  • 박찬일;조도현
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.358-364
    • /
    • 2012
  • This work dealt with dynamic characteristics of spur gear and helical gear system to understand the gear vibration and noise. To find out dynamic characteristics in the gear system, a finite element model and an analytic model for the gear system were used. Using the models, the natural frequency and mode-shape characteristics of spur gears and helical gears were calculated. Two models show that natural frequencies of helical gears were lower than those of spur gears. Mode-shape characteristics of gear pairs by analytical model and some issues of finite element modeling were also discussed. Impact test was used to validate the finite element model.