• Title/Summary/Keyword: Dynamic Fatigue

Search Result 611, Processing Time 0.022 seconds

The humeral suspension technique: a novel operation for deltoid paralysis

  • de Joode, Stijn GCJ;Walbeehm, Ralf;Schotanus, Martijn GM;van Nie, Ferry A;van Rhijn, Lodewijk W;Samijo, Steven K
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.3
    • /
    • pp.240-243
    • /
    • 2022
  • Isolated deltoid paralysis is a rare pathology that can occur after axillary nerve injury due to shoulder trauma or infection. This condition leads to loss of deltoid function that can cause glenohumeral instability and inferior subluxation, resulting in rotator cuff muscle fatigue and pain. To establish dynamic glenohumeral stability, a novel technique was invented. Humeral suspension is achieved using a double button implant with non-resorbable high strength cords between the acromion and humeral head. This novel technique was used in two patients with isolated deltoid paralysis due to axillary nerve injury. The results indicate that the humeral suspension technique is a method that supports centralizing the humeral head and simultaneously dynamically stabilizes the glenohumeral joint. This approach yielded high patient satisfaction and reduced pain. Glenohumeral alignment was improved and remained intact 5 years postoperative. The humeral suspension technique is a promising surgical method for subluxated glenohumeral joint instability due to isolated deltoid paralysis.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

Exploration of the dimensionality of Iran's trade show performance and application of R-IPA (이란 전시회 성과요인 탐색 및 무역박람회에 수정된 중요도-성취도분석 (R-IPA) 적용 방안)

  • Yoon-say Jeong
    • Korea Trade Review
    • /
    • v.45 no.4
    • /
    • pp.45-63
    • /
    • 2020
  • This study aims to identify the dimensions of trade show performance in Iranian trade shows and apply the revised importance-performance analysis. The IPA method integrates two types of indirect importance and a composite I-P mapping using traditional four-quadrants, as well as a diagonal line on a two-dimensional grid. Based on the analysis results, this study presents several suggestions to contribute to the development of the trade show industry. First, it is noted that the dimensionality of trade show performance in a developing country context can be different from that of prior literature. Taking different industry development stages of a show hosting countries, examining the dimensions of each trade show performance with every effort to derive proper exhibitors' implications is necessary. Second, the use of statically-derived importance is recommended while considering respondents' convenience to reduce their time and fatigue when collecting data at the busy booths. Further, applying composite I-P mapping is suggested as an effective diagnostic tool to provide optimal trade show strategies for the exhibitors under the dynamic and ever-changing global business environment.

Surface Preparation and Activation Only by Abrasion and Its Effect on Adhesion Strength

  • Ali Gursel;Salih Yildiz
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • Adhesive joints have many advantages such as weight savings, corrosion and fatigue resistance and now developed even withstand of high impact and dynamic loads. However, an adhesion has cumbersome and complicated surface preparation processes. The surface preparation step is critical in adhesive joint manufacturing in order to obtain the prescribed strength for adhesive joints. In this study, it was attempted to simplify and reduce the number of surface preparation steps, and abrasion and rapid adhesive application (ARAA) process is developed for an alternative solution. The abrasion processes are performed only for creating surface roughness in standard procedures (SP), although the abrasion processes cause surface activation itself. The results showed that there is no need the long procedures in laboratory or chemical agents for adhesion. After the abrasion process, the attracted and highly reactive fresh surface layer obtained, and its effect on bonding success is observed and analyzed in this research, in light of the essential physic and adhesion theories. Al 6061 aluminum adherends and epoxy-based adhesives were chosen for bonding processes, which is mostly used in light vehicle parts. The adherends were cleaned, treated and activated only with abrasion, and after the adhesive application the specimens were tested under quasi-static loading. The satisfied ARAA results were compared with that of the specimens fabricated by the standard procedure (SP) of adhesion processes of high impact loads.

Riser Configuration Design for a 15-MW Floating Offshore Wind Turbine Integrated with a Green Hydrogen Facility

  • Sung-Jae Kim;Sung-Ju Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.137-147
    • /
    • 2024
  • Green hydrogen presents a sustainable and environmentally friendly solution for clean energy production and transportation. This study aims to identify the optimal profile of green hydrogen transportation risers originating from a floating offshore wind turbine (FOWT) integrated with a hydrogen production facility. Employing the Cummins equation, a fully coupled dynamic analysis for FOWT with a flexible riser was conducted, with the tower, mooring lines, and risers described using a lumped mass line model. Initially, motion response amplitude operators (RAOs) were compared with openly published results to validate the numerical model for the FOWT. Subsequently, a parametric study was conducted on the length of the buoyancy module section and the upper bare section of the riser by comparing the riser's tension and bending moment. The results indicated that as the length of the buoyancy module increases, the maximum tension of the riser decreases, while it increases with the lengthening of the bare section. Furthermore, shorter buoyancy modules are expected to experience less fatigue damage, with the length of the bare section having a relatively minor impact on this phenomenon. Consequently, to ensure safety under extreme environmental conditions, both the upper bare section and the buoyancy module section should be relatively short.

Design Improvements for Preventing Crack of Equipment Mounting Structure in Rotary Wing Aircraft (회전익 항공기의 장비 장착 지지 구조물의 균열 방지를 위한 설계 개선)

  • Bang, Daehan;Lee, Sook;Lee, Sanghoon;Choi, Sangmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2020
  • This paper presents the design improvements made for the crack which is in the mounting structure of the mechanical structure of rotary wing aircraft. The doubler added to the mounting structure of rotary wing aircraft was designed and manufactured based on the load at the development stage, and a crack was found in the surface of doubler at a certain point during the operation of the aircraft. To identify the cause of the crack, the initial deformation of the structure, which may occur as a result of fastening condition, was considered and the dynamic analysis of the natural frequency of the structure comparing to the blade passing frequency of the aircraft were additionally reviewed. As a result of this study, a shim was added to remove the physical gap of the fastening area, and a doubler with thickened reinforcement was installed. The increase of structural strength is shown by reviewing the results of dynamic analysis for the structural verification of the improved design, and the fatigue evaluation complied to the requirement of the aircraft lifetime.

Characteristics of the Warm-Mix Asphalt Mixtures Using the Modified Sulfur Binder (개질 유황결합재를 사용한 중온아스팔트 혼합물의 특성)

  • Kim, Se-Won;Park, Hung-Suck;Kim, Jong-Kyu;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.489-495
    • /
    • 2016
  • In this study, the Warm-Mix Asphalt was prepared using a modified Sulfur Binder mixed with an additive of a polymer component in sulfur, which is an industrial by-product generated in the crude oil refining process. The dynamic stability and durability characteristics of the prepared Warm-Mix Asphalt was evaluated by the indirect tensile strength, the tensile strength ratio before and after water immersion and freezing-thawing, and the dynamic stability by wheel tracking test. The Warm-Mix Asphalt Mixtures using Modified Sulfur Binder has a tensile strength ratio before and after water immersion of 0.88, which is about 1.13 times that of the Warm-Mix formed modified Asphalt, and the tensile strength ration before and after freezing-thawing is also 0.82, thus, all tensile strength ratios satisfied the KS quality standard value of 0.75 or more. The indirect tensile strength was 1.6MPa which was twice the KS quality standard value of 0.8MPa, and about 1.24 times higher than that of normal heated asphalt 1.29MPa. In addition, the dynamic stability by the wheel tracking test was 14,075 times/mm, which was about 15 times higher than that of normal heated asphalt and about 3 times higher than that of the Warm-Mix formed modified Asphalt, showing excellent resistance to plastic deformation such as fatigue cracks.

Shear Force Variation of Stiffening Girder caused by Vibration of Stay Cable (사장 케이블 진동에 의한 보강형의 전단력 변화)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.1-8
    • /
    • 2009
  • Stay cable is easily exposed to vibration induced rainy wind effects. There are some problems for not only unexpected vibration but also well-known vibration. An outbreak of displacement by the said effects brings damages such as over-tension of cables and barriers, fatigue of anchorages and dampers, and additional shear force variation of stiffening girders. This study suggests analytic methodology for dynamic tension variation of cables and shear force variation of stiffening girders. Additionally this study announces with dynamic problems for cable stayed bridge briefly. To realize this subject, we divide restoring force into chord component and normal component and then make up the differential equations which can satisfy physical phenomenon for each component. Finally we apply adequate functions such as sinusoidal and parabola in order to reduce these differential equations. Therefore we can meet with good results through a series of above process. As a remarkable result, CIP recommendations (2002) give inadequate solution with over 10% error. However it gives very good solution if parts of our study are reflected at the said recommendations. The fact means that CIP recommendations (2002) well-known as international standard of stay cables are not even concern about this subject yet. For verification of this study, F.E. analysis using E.C.C. with external forces was fulfilled, and the accuracy and conciseness of this study were shown.