• Title/Summary/Keyword: Dynamic Evolution

Search Result 395, Processing Time 0.029 seconds

Dynamic Recrystallization of Medium Carbon Steels (중탄소강의 동적 재결정에 관한 연구)

  • Kim S. I.;Han C. H.;Yoo Y. C.;Lee D. R.;Ju U. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.33-36
    • /
    • 2000
  • The dynamic recrystallization (DRX) of medium carbon steels (SCM 440 and POSMA45) was studied with torsion test in the temperature range of $900-1100^{\circ}C$ and the strain rate range of $5.0x10^{-2}\;-\;5.0x10^0/sec$. To establish the quantitative equations for DRX, the evolution of flow stress curve with strain was analyzed. The critical strain (${\varepsilon}_c$) and strain for maximum softening rate ( ${\varepsilon}^{*}$) could be confirmed by the analysis of work hardening rate ($d{\sigma}/d{\varepsilon}\;=\; \theta$). The volume fraction of dynamic recrystallization ($X_{DRX}$) as a function of processing variables, such as strain rate ( $\dot{\varepsilon}$ ), temperature (T), and strain ( $\varepsilon$ ) were established using the ${\varepsilon}_c$ and ${\varepsilon}^{*}$. For the exact prediction, the ${\varepsilon}_c$, ${\varepsilon}^{*}$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steels at any deformation conditions.

  • PDF

System identification of the suspension tower of Runyang Bridge based on ambient vibration tests

  • Li, Zhijun;Feng, Dongming;Feng, Maria Q.;Xu, Xiuli
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.523-538
    • /
    • 2017
  • A series of field vibration tests are conducted on the Runyang Suspension Bridge during both the construction and operational stages. The purpose of this study is devoted to the analysis of the dynamic characteristics of the suspension tower. After the tower was erected, an array of accelerometers was deployed to study the evolution of its modal parameters during the construction process. Dynamic tests were first performed under the freestanding tower condition and then under the tower-cable condition after the superstructure was installed. Based on the identified modal parameters, the effect of the pile-soil-structure interaction on dynamic characteristics of the suspension tower is investigated. Moreover, the stiffness of the pile foundation is successfully identified using a probabilistic finite model updating method. Furthermore, challenges of identifying the dynamic properties of the tower from the coupled responses of the tower-cable system are discussed in detail. It's found that compared with the identified results from the freestanding tower, the longitudinal and torsional natural frequencies of the tower in the tower-cable system have changed significantly, while the lateral mode frequencies change slightly. The identified modal results from measurements by the structural health monitoring system further confirmed that the vibrations of the bridge subsystems (i.e., the tower, the suspended deck and the main cable) are strongly coupled with one another.

Dynamic prediction fatigue life of composite wind turbine blade

  • Lecheb, Samir;Nour, Abdelkader;Chellil, Ahmed;Mechakra, Hamza;Ghanem, Hicham;Kebir, Hocine
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.673-691
    • /
    • 2015
  • In this paper we are particularly focusing on the dynamic crack fatigue life of a 25 m length wind turbine blade. The blade consists of composite materiel (glass/epoxy). This work consisted initially to make a theoretical study, the turbine blade is modeled as a Timoshenko rotating beam and the analytical formulation is obtained. After applying boundary condition and loads, we have studied the stress, strain and displacement in order to determine the critical zone, also show the six first modes shapes to the wind turbine blade. Secondly was addressed to study the crack initiation in critical zone which based to finite element to give the results, then follow the evolution of the displacement, strain, stress and first six naturals frequencies a function as crack growth. In the experimental part the laminate plate specimen with two layers is tested under cyclic load in fully reversible tensile at ratio test (R = 0), the fast fracture occur phenomenon and the fatigue life are presented, the fatigue testing exerted in INSTRON 8801 machine. Finally which allows the knowledge their effect on the fatigue life, this residual change of dynamic behavior parameters can be used to predicted a crack size and diagnostic of blade.

A dynamic reliability approach to seismic vulnerability analysis of earth dams

  • Hu, Hongqiang;Huang, Yu
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.661-668
    • /
    • 2019
  • Seismic vulnerability assessment is a useful tool for rational safety analysis and planning of large and complex structural systems; it can deal with the effects of uncertainties on the performance of significant structural systems. In this study, an efficient dynamic reliability approach, probability density evolution methodology (PDEM), is proposed for seismic vulnerability analysis of earth dams. The PDEM provides the failure probability of different limit states for various levels of ground motion intensity as well as the mean value, standard deviation and probability density function of the performance metric of the earth dam. Combining the seismic reliability with three different performance levels related to the displacement of the earth dam, the seismic fragility curves are constructed without them being limited to a specific functional form. Furthermore, considering the seismic fragility analysis is a significant procedure in the seismic probabilistic risk assessment of structures, the seismic vulnerability results obtained by the dynamic reliability approach are combined with the results of probabilistic seismic hazard and seismic loss analysis to present and address the PDEM-based seismic probabilistic risk assessment framework by a simulated case study of an earth dam.

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

Analysis of Global Media Reporting Trends for K-fashion -Applying Dynamic Topic Modeling- (K 패션에 대한 글로벌 미디어 보도 경향 분석 -다이내믹 토픽 모델링(Dynamic Topic Modeling)의 적용-)

  • Hyosun An;Jiyoung Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1004-1022
    • /
    • 2022
  • This study seeks to investigate K-fashion's external image by examining the trends in global media reporting. It applies Dynamic Topic Modeling (DTM), which captures the evolution of topics in a sequentially organized corpus of documents, and consists of text preprocessing, the determination of the number of topics, and a timeseries analysis of the probability distribution of words within topics. The data set comprised 551 online media articles on 'Korean fashion' or 'K-fashion' published on Google News between 2010 and 2021. The analysis identifies seven topics: 'brand look and style,' 'lifestyle,' 'traditional style,' 'Seoul Fashion Week (SFW) event,' 'model size,' 'K-pop,' and 'fashion market,' as well as annual topic proportion trends. It also explores annual word changes within the topic and indicates increasing and decreasing word patterns. In most topics, the probability distribution of the word 'brand' is confirmed to be on the increase, while 'digital,' 'platform,' and 'virtual' have been newly created in the 'SFW event' topic. Moreover, this study confirms the transition of each K-fashion topic over the past 12 years, along with various factors related to Hallyu content, traditional culture, government support, and digital technology innovation.

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution (미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석)

  • Jeong Ho-Seung;Cho Jong-Rae;Park Hee-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.938-945
    • /
    • 2005
  • The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

Path-based Dynamic User Equilibrium Assignment Model using Simulation Loading Method (시뮬레이션 부하기법을 이용한 경로기반 동적통행배정모형의 개발)

  • 김현명;임용택;백승걸
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 2001
  • Since late 1970s. one of the principal research areas in transportation problem is dynamic traffic assignment (DTA). Although many models have been developed regarding DTA, yet they have some limits of describing real traffic patterns. This reason comes from the fact that DTA model has the time varying constraints such as state equation, flow propagation constraint, first in first out(FIFO) rule and queuing evolution. Thus, DTA model should be designed to satisfy these constraints as well as dynamic route choice condition, dynamic user equilibrium. In this respect, link-based DTA models have difficulty in satisfying such constraints because they have to satisfy the constraints for each link, while path-based DTA models may easily satisfy them. In this paper we develop a path-based DTA model. The model includes point queue theory to describe the queue evolution and simulation loading method for depicting traffic patterns in more detail. From a numerical test, the model shows promising results.

  • PDF

Trends in Network and AI Technologies (네트워크와 AI 기술 동향)

  • Kim, Tae Yeon;Ko, Namseok;Yang, Sunhee;Kim, Sun Me
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • Recently, network infrastructure has evolved into a BizTech agile autonomous network to cope with the dynamic changes in the service environment. This survey presents the expectations from two different perspectives of the harmonization of network and artificial intelligence (AI) technologies. First, the paper focuses on the possibilities of AI technology for the autonomous network industry. Subsequently, it discusses how networks can play a role in the evolution of distributed AI technologies.