Park, Meejeong;Kim, Sang Bum;Kim, Eun Ja;Rhee, Shinho;Song, Yi;Lim, Chang Su;Choi, Jin Ah;Chin, Hyun Seung
Journal of Korean Society of Rural Planning
/
v.20
no.4
/
pp.263-276
/
2014
The purpose of this study is to investigate the entire processes of rural amenity resources survey from the beginning to the end, to discuss the results of the survey and resources information establishment, and to comprehensively analyze the status of resources information application. Rural amenity resources survey, which is aimed at finding rural amenity resources to respond to the demands of the resources and support rural development, was first conducted by National Academy of Agricultural Science under Rural Development Administration in 2005. The first survey subjects were 149 eups and myeons in Korea, expanding to the nationwide rural villages. In 2012, the rural amenity resources survey was completed. Next year, the information establishment was completely made. It is expected that the rural amenity resources information established by the survey will be more applied and used, and that with the constant addition of new analyses in line with the changing environment demands, rural amenity resources will contribute to dynamic rural development.
Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
v.23
no.9
/
pp.1-7
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.210-216
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.10
/
pp.3010-3039
/
2024
This research delves into the realm of Maritime Cybersecurity, focusing on the application of Artificial Intelligence (AI) mechanisms, namely K-Nearest Neighbors (KNN), Random Forest (RF), and Artificial Neural Networks (ANN). The maritime industry faces evolving cyber threats, necessitating innovative approaches for robust defense. The maritime sector is increasingly reliant on digital technologies, making it susceptible to cyber threats. Traditional security measures are insufficient against sophisticated attacks, necessitating the integration of AI mechanisms. This research aims to evaluate the effectiveness of KNN, RF, and ANN in fortifying maritime cybersecurity, providing a proactive defense against emerging threats. Investigate the application of KNN, RF, and ANN in the maritime cybersecurity landscape. Assess the performance of these AI mechanisms in detecting and mitigating cyber threats. Explore the adaptability of KNN, RF, and ANN to the dynamic maritime environment. Provide insights into the strengths and limitations of each algorithm for maritime cybersecurity. The study employs these AI algorithms to analyze historical maritime cybersecurity data, evaluating their accuracy, precision, and recall in threat detection. Results demonstrate the effectiveness of KNN in identifying localized anomalies, RF in handling complex threat landscapes, and ANN in learning intricate patterns within maritime cybersecurity data. Comparative analyses reveal the strengths and weaknesses of each algorithm, offering valuable insights for implementation. In conclusion, the integration of KNN, RF, and ANN mechanisms presents a promising avenue for enhancing maritime cybersecurity. The study underscores the importance of adopting AI solutions to the maritime domain's unique challenges. While each algorithm demonstrates efficacy in specific scenarios, a hybrid approach may offer a comprehensive defense strategy. As the maritime industry continues to evolve, leveraging AI mechanisms becomes imperative for staying ahead of cyber threats and safeguarding critical assets. This research contributes to the ongoing discourse on maritime cybersecurity, providing a foundation for future developments in the field.
WPS(Wearable Personal Station) for next generation PC can define as a core terminal of 'Ubiquitous Computing' that include information processing and network function and overcome spatial limitation in acquisition of new information. As a way to acquire significant dynamic gesture data of user from haptic devices, traditional gesture recognizer based on desktop-PC using wire communication module has several restrictions such as conditionality on space, complexity between transmission mediums(cable elements), limitation of motion and incommodiousness on use. Accordingly, in this paper, in order to overcome these problems, we implement hand gesture recognition system using fuzzy algorithm and neural network for Post PC(the embedded-ubiquitous environment using blue-tooth module and WPS). Also, we propose most efficient and reasonable hand gesture recognition interface for Post PC through evaluation and analysis of performance about each gesture recognition system. The proposed gesture recognition system consists of three modules: 1) gesture input module that processes motion of dynamic hand to input data 2) Relational Database Management System(hereafter, RDBMS) module to segment significant gestures from input data and 3) 2 each different recognition modulo: fuzzy max-min and neural network recognition module to recognize significant gesture of continuous / dynamic gestures. Experimental result shows the average recognition rate of 98.8% in fuzzy min-nin module and 96.7% in neural network recognition module about significantly dynamic gestures.
Electronic commerce, commonly known as e-commerce or eCommerce, has become a major business trend in these days. The amount of trade conducted electronically has grown extraordinarily by developing the Internet technology. Most electronic commerce has being conducted between businesses to customers; therefore, the researches with respect to e-commerce are to find customer's needs, behaviors through statistical methods. However, the statistical researches, mostly based on a questionnaire, are the static researches, They can tell us the dynamic relationships between initial purchasing and repurchasing. Therefore, this study proposes dynamic research model for analyzing the cause of initial purchasing and repurchasing. This paper is based on the System-Dynamic theory, using the powerful simulation model with some restriction, The restrictions are based on the theory TAM(Technology Acceptance Model), PAM, and TPB(Theory of Planned Behavior). This article investigates not only the customer's purchasing and repurchasing behavior by passing of time but also the interactive effects to one another. This research model has six scenarios and three steps for analyzing customer behaviors. The first step is the research of purchasing situations. The second step is the research of repurchasing situations. Finally, the third step is to study the relationship between initial purchasing and repurchasing. The purpose of six scenarios is to find the customer's purchasing patterns according to the environmental changes. We set six variables in these scenarios by (1) changing the number of products; (2) changing the number of contents in on-line shopping malls; (3) having multimedia files or not in the shopping mall web sites; (4) grading on-line communities; (5) changing the qualities of products; (6) changing the customer's degree of confidence on products. First three variables are applied to study customer's purchasing behavior, and the other variables are applied to repurchasing behavior study. Through the simulation study, this paper presents some inter-relational result about customer purchasing behaviors, For example, Active community actions are not the increasing factor of purchasing but the increasing factor of word of mouth effect, Additionally. The higher products' quality, the more word of mouth effects increase. The number of products and contents on the web sites have same influence on people's buying behaviors. All simulation methods in this paper is not only display the result of each scenario but also find how to affect each other. Hence, electronic commerce firm can make more realistic marketing strategy about consumer behavior through this dynamic simulation research. Moreover, dynamic analysis method can predict the results which help the decision of marketing strategy by using the time-line graph. Consequently, this dynamic simulation analysis could be a useful research model to make firm's competitive advantage. However, this simulation model needs more further study. With respect to reality, this simulation model has some limitations. There are some missing factors which affect customer's buying behaviors in this model. The first missing factor is the customer's degree of recognition of brands. The second factor is the degree of customer satisfaction. The third factor is the power of word of mouth in the specific region. Generally, word of mouth affects significantly on a region's culture, even people's buying behaviors. The last missing factor is the user interface environment in the internet or other on-line shopping tools. In order to get more realistic result, these factors might be essential matters to make better research in the future studies.
KIM, Byung-Ju;KANG, Byoung-Ju;YOU, So-Young;KWON, Jay-Hyoun
Journal of the Korean Association of Geographic Information Studies
/
v.20
no.3
/
pp.67-79
/
2017
Increasing transportation dependence on the metro system has lead to the convenience of passengers becoming as important as the transportation capacity. In this study, a pedestrian simulator has been developed that can quantitatively assess the pedestrian environment in terms of attributes such as speed and distance. The simulator consists of modules designed for 3D indoor map authoring and algorithmic pedestrian modeling. Module functions for 3D indoor map authoring include 3D spatial modeling, network generation, and evaluation of obtained results. The pedestrian modeling algorithm executes functions such as conducting a path search, allocation of users, and evaluation of level of service (LOS). The primary objective behind developing the said functions is to apply and analyze various scenarios repeatedly, such as before and after the improvement of the pedestrian environment, and to integrate the spatial information database with the dynamic information database. Furthermore, to demonstrate the practical applicability of the proposed simulator in the future, a test-bed was constructed for a currently operational metro station and the quantitative index of the proposed improvement effect was calculated by analyzing the walking speed of pedestrians before and after the improvement of the passage. The possibility of database extension for further analysis has also been discussed in this study.
VR is a dynamic image simulation technology with very high information density. Among them, spatial depth, temporality, and realism bring an unprecedented sense of immersion to the experience. However, due to its high information density, the information contained in it is very easy to be manipulated, creating an illusion of objectivity. Users need guidance to help them interpret the high density of dynamic image information. Just like setting up navigation interfaces and interactivity in games, interactivity in virtual reality is a way to interpret virtual content. At present, domestic research on VR content is mainly focused on technology exploration and visual aesthetic experience. However, there is still a lack of research on interactive storytelling design, which is an important part of VR content creation. In order to explore a better interactive storytelling model in virtual reality content, this paper analyzes the interactive storytelling features of the VR animated version of <Wolves in the walls> through the methods of literature review and case study. We find that the following rules can be followed when creating VR content: 1. the VR environment should fully utilize the advantages of free movement for users, and users should not be viewed as mere observers. The user's sense of presence should be fully considered when designing interaction modules. Break down the "fourth wall" to encourage audience interaction in the virtual reality environment, and make the hot media of VR "cool". 2.Provide developer-driven narrative in the early stages of the work so that users are not confused about the ambiguous world situation when they first enter a virtual environment with a high degree of freedom. 1.Unlike some games that guide users through text, you can guide them through a more natural interactive approach that adds natural dialog between the user and story characters (NPC). Also, since gaze guidance is an important part of story progression, you should set up spatial scene user gaze guidance elements within it. For example, you can provide eye-following cues, motion cues, language cues, and more. By analyzing the interactive storytelling features and innovations of the VR animation <Wolves in the walls>, I hope to summarize the main elements of interactive storytelling from its content. Based on this, I hope to explore how to better showcase interactive storytelling in virtual reality content and provide thoughts on future VR content creation.
Journal of the Korean Association of Geographic Information Studies
/
v.13
no.2
/
pp.41-53
/
2010
Traffic safety assessment is often accomplished by analyzing the number of crashes occurring in some geographic space over certain specific time duration. In this paper, we introduce a procedure that can efficiently analyze spatial and temporal changes in traffic crashes before-and-after implementation of a certain traffic controlling measure. For the analysis, crash frequency data before-and-after closing a major highway around St. Louis in Missouri was collected through Transportation Management System(TMS) database that is maintained by Missouri Department of Transportation (MoDOT). In order to identify any spatial and temporal pattern in crashes, each crash is pinpointed on a map using the dynamic segmentation in GIS. Then, the identified pattern is statistically confirmed using an analysis of variance table. The advantage of this approach is to easily assess spatial and temporal trend of crashes that are not readily attainable otherwise. The results from this study can possibly be applied in enhancing the highway safety assessment procedure. This paper also makes several suggestions for future development of a comprehensive transportation data system in Korea which is similar to MoDOT's TMS database.
Kim, Kap-Dong;Park, Jun-Hee;Lee, Kwang-Il;Kim, Hag-Young;Kim, Sang-Ha
The KIPS Transactions:PartC
/
v.13C
no.5
s.108
/
pp.627-634
/
2006
Overlay network eliminates the need to change the application-layer tree when the underlying network changes and enables the overlay network to survive in environments where nonmember nodes do not support multicast functionality. An overlay protocol monitors group dynamics, while underlying unicast protocols track network dynamics, resulting in more stable protocol operation and low control overhead even in a highly dynamic environment. But, if overlay multicast protocols does not know the location information of node, this makes it very difficult to build an efficient multicasting tree. So, we propose a Hierarchical Overlay Multicast Architecture (HOMA) with the location information. Because proposed architecture makes static region-based dynamic group by multicast members, it is 2-tired overlay multicasts of application layer that higher layer forms overlay multicast network between members that represent group, and support multicast between multicast members belonging to region at lower layer. This use GPS, take advantage of geographical region, and realizes a region-sensitive higher layer overlay multicast tree which is impervious to the movements of nodes. The simulation results show that our approach solves the efficiency problem effectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.