• Title/Summary/Keyword: Dynamic Elements

검색결과 1,384건 처리시간 0.026초

접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석 (Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring)

  • 김민규;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

Dynamic Analysis of Bending-Torsion Coupled Beam Structures Using Exact Dynamic Elements

  • Hong, Seong-Wook;Kang, Byung-Sik;Park, Joong-Youn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.15-22
    • /
    • 2003
  • Beams are often subject to bending-torsion coupled vibration due to mass coupling and/or stiffness coupling. This paper proposes a dynamic analysis method using the exact dynamic element for bending-torsion coupled vibration of general plane beam structures with joints. The exact dynamic element matrix for a bending-torsion coupled beam is derived, and the detailed procedure of using the exact dynamic element matrix is also presented. Three examples are provided for validating and illustrating the proposed method. The numerical study proves the proposed method to be useful for dynamic analysis of bending-torsion coupled beam structures with joints.

변형율속도를 고려한 반복하중을 받는 철근콘크리트 부재의 동적 비선형 해석모델 (Dynamic Nonlinear Analysis Model for Reinforced Concrete Elements considering Strain Rate Effects under Repeated Loads)

  • 심종성;문일환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.78-83
    • /
    • 1990
  • The current analytical techniques for R/C elements under severe dynamic repeated loads, like earthquake or impact, has two major problems; one is that the effects of strain rate are not considered and the other one is the current model was developed based on flexural behavior only. Thus, this study develops a computer software that can idealize the flexural and shear behavior of R/C elements using several parameters and also can consider the effects of strain rate. The analytical results using the developed analytical technique were compared with several experimental results and were generally satisfied.

  • PDF

지반-골조구조물 상호작용계의 3차원 정.동적 해석 (3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System)

  • 서상근;장병순
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.243-254
    • /
    • 1997
  • 기초 지반상에 존재하는 3차원 골조구조물에 진동을 유발시키는 기계하중, 풍하중, 지진과 같은 동적 하중이 작용한다면, 지반-골조구조물 상호작용계의 동적거동을 해석하여야한다. 따라서, 본 연구에서는 실제 구조물에 근접한 기하학적 형상으로 이상화 시키기 위해, 슬래브와 기초판은 유연성을 갖는 4-절점 판요소, 보.기둥은 2-절점 보요소, 탄성지반은 8-절점 입체요소를 사용하여 유한요소법으로 3차원 상호작용계를 해석하였다. 본 연구의 목적은 지반-골조구조물 상호작용계의 동적 거동을 해석하기 위해, 동적 운동 방정식을 정리한 후 유한요소 프로그램으로 상호작용계의 동적 거동을 해석하는 것이다.

  • PDF

Nonlinear finite element formulation for sliding cable structures considering frictional, thermal and pulley-dimension effects

  • Yang, Menggang;Chen, Shizai;Hu, Shangtao
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.205-224
    • /
    • 2022
  • This paper presents a refined finite element formulation for nonlinear static and dynamic analysis of sliding cable structures, overcoming the limitation of the existing approaches that neglect or approximate the friction, pulley dimension, temperature and geometric nonlinearity. A new family of elements with the same framework is proposed, consisting of the cable-pulley (CP) elements considering sliding friction, and the non-sliding cable-pulley (NSCP) elements considering static friction. Thereafter, the complete procedure of static and dynamic analysis using the proposed elements is developed, with the capability of accurately dealing with the friction at each pulley. Several examples are utilized to verify the validity and accuracy of the proposed elements and analysis strategy, and investigate the frictional, thermal and pulley-dimension effects as well. The numerical examples show that the results obtained in this work are in good accordance with the existing works when using the same approximations of friction, pulley dimension and temperature. By avoiding the approximations, the proposed formulation can be effectively adopted in predicting the more precise nonlinear responses of sliding cable structures.

LIBL을 이용한 다이나믹 시스템의 퍼지제어 (Fuzzy Control of Dynamic systems Using LIBL(Linguistic Instruction Based Learning))

  • 조중선;박계각;정경욱;박래석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.139-144
    • /
    • 1995
  • LIBL(Linguistic Instruction Based Leaning) is an effective learning algorithm for fuzzy controller which interpretes and uses natural language of human The possibiliy of the LIBL algorithm to the fuzzy control of dynamic systems is investigated in this paper. Rise time, percent overshoot, and steady stste are proposed as suitable meaning elements for dynamic systems. A supervisor is able to give "higer-level linguistic instruction" to the learning algorithm through these three meaning elements Simulation results for a DC servo motor show the validity of the proposed algorithm.

  • PDF

Knowledge-driven Dynamic Capability and Organizational Alignment: A Revelatory Historical Case

  • Kim, Gyeung-Min
    • Asia pacific journal of information systems
    • /
    • 제20권1호
    • /
    • pp.33-56
    • /
    • 2010
  • The current business environment has been characterized as less munificent, highly uncertain and constantly evolving. In this environment, the company with dynamic capability is reported to be more successful than others in building competitive advantage. Dynamic capability focuses on the link between a dynamically changing environment, strategic agility, architectural reconfiguration, and value creation. Being characterized to be flexible and adaptive to market circumstance changes, an organization with dynamic capability is described to have high resource fluidity, which represents business process, resource allocation, human resource management and incentives that make business transformation faster and easier. Successful redeployment of the resources for dynamic adaptation requires organizational forms and reward systems to be well aligned with firm's technological infrastructures and business process. The alignment is considered to be an executive level commitment. Building dynamic capability is knowledge driven; relying on new knowledge to reconfigure firm's resources. Past studies established the link between the effective execution of a knowledge-focused strategy and relevant setting of architectural elements such as human resources, structure, process and information systems. They do not, however, describe in detail the underlying processes by which architectural elements are adjusted in coordinated manners to build knowledge-driven dynamic capability. In fact, understandings of these processes are one of the top issues in IT management. This study analyzed how a Korean corporation with a knowledge-focused strategy aligned its architectural elements to develop the dynamic capability and thus create value in the dynamically changing markets. When the Korean economy was in crisis, the company implemented a knowledge-focused strategy, restructured the organization's architecture by which human and knowledge resources are identified, structured, integrated and coordinated to identify and seize market opportunity. Specifically, the following architectural elements were reconfigured: human resource, decision rights, reward and evaluation systems, process, and IT infrastructure. As indicated by sales growth, the reconfiguration helped the company create value under an extremely turbulent environment. According to Ancona et al. (2001), depending on the types of lenses the organization uses, different types of architecture will emerge. For example, if an organization uses political lenses focusing on power, influence, and conflict. the architecture that leverage power and negotiate across multiple interest groups would emerge. Similarly, if an organization uses economic lenses focusing on the rational behavior of organizational actors making choices based on the costs and benefits of action, organizational architecture should be designed to motivate and provide incentives for the actors (Smith, 2001). Compared to this view, information processing perspectives consider architecture to be designed to maximize the capacity of information processing by the actors. Using knowledge lenses, the company studied in this research established architectural elements in a manner that allows the firm to effectively structure knowledge resources to form dynamic capability. This study is revelatory single case with a historic perspective. As a result of this study, a set of propositions and a framework are derived, which can be used for architectural alignment.

동적 링크를 활용한 특정 함수 호출 (Exploit the method according to the function call)

  • 옥근호;강영진;이훈재
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.755-758
    • /
    • 2016
  • 본 논문에서는 바이너리 프로그램에서 함수가 호출될 시 바이너리 내에서 어떠한 방법으로 함수를 호출하는지 설명한다. 그리고 그 함수를 호출할시 필요한 요소들과 C언어 파일의 동적링크 컴파일 과정과 그 요소들을 이어주는 '링커'라는 개념을 설명하고, 정적링크와 동적링크를 차이점을 비교 분석한다. 또한 동적 링크를 활용하여 취약점을 공격하는 Return To Dynamic Linker에 대해 간략히 서술하며 테스트바이너리에 시험해본다.

  • PDF

동적 외연적/강소성 유한요소 해석과 차체판넬성형에의 적용 (A Dynamic Explicit/Rigid-plastic Finite Element Analysis and its Application to Auto-body Panel Stamping Process)

  • 정동원;양동열
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.16-25
    • /
    • 1996
  • In the present work a rigid-plastic finite element formulation using dynamic explicit time integration scheme is proposed for numerical analysis of auto-body panel stamping processes. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. A damping scheme is proposed in order to achieve a stable solution procedure in dynamic sheet forming problems. In order to improve the drawbacks of the conventional membrane elements, BEAM(abbreviated from Bending Energy Augmented Membrane) elements are employed. Rotational damping and spring about the drilling direction are introduced to prevent a zero energy mode. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and the direct trial-and-error method. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oilpan, a fuel tank and a front fender. The numerical results of explicit analysis are compared with the implicit results with good agreements and it is shown that the explicit scheme requires much shorter computational time, especially when the problem becomes more complicated. It is thus shown that the proposed dynamic explicit rigid-plastic finite element method enables an effective computation for complicated autobody panel stamping processes.

  • PDF

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.