• 제목/요약/키워드: Dynamic Design of System

검색결과 3,889건 처리시간 0.035초

석유화학 플랜트의 배관계 설계기준에 대한 연구 (A Study on Design Criteria of Piping System in Petrochemical Plant)

  • 민선규;최명진
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.192-199
    • /
    • 2002
  • Largely, there are three kinds of the design criteria of piping system in petrochemical plant. The first is on the pipe thickness in accordance with the design pressure of piping system. The second is on the static state evaluation by thermal growth and the other is on the dynamic evaluation by piping vibration. According to the ASME B31.3 code, the internal pressure design thickness fur straight pipe shall be calculated as a code formula. And the static design by thermal displacement is defined 7000 cycles of fatigue life in operating the piping system with a design condition. However, the dynamic design evaluation in comparative with small displacements of high frequencies to the static condition has not established clearly the method, yet. So, this study purposes to present the trial of a proposal of dynamic design criterion on the basis of static design method.

경량전철 주행 시 교량에 발생하는 동적응답 설계 비교 연구 (A Comparison Study on the Design of Dynamic Response appears on Bridge as operation of Light Railway Train)

  • 연상호;강성원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.86-92
    • /
    • 2008
  • AGT system is a kind of light railway train. AGT system use of concrete track and rubber tire, so it can be reduce the noise and vibration, compare to the normal train system. And, the dynamic responses of normal bridge are influenced by the dynamic characteristics of bridge, the speed of vehicle and the surface roughness of railway. But the AGT system bridge is influenced not only the above facts but also the guiderail unevenness, because, AGT vehicle steered by guiderail. So, in this study, optimized service condition is suggested for the design and operation of AGT system, by the means of experimental study. The experiments are executed for PSC bridge with length of 30m, at the AGT test line in Kyongsan. The test results are compared and investigated according to the prominence. In the test result, the guiderail prominence influenced on the dynamic response of bridge. It shows a increase as compared with no guiderail prominence in the dynamic response value acceleration, displacement, stain.

  • PDF

부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 동적 출력 궤환 가변 구조 제어기 (A Dynamic Output Feedback Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2066-2072
    • /
    • 2010
  • In this paper, a variable structure dynamic output feedback controller with an transformed sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty, matched input matrix uncertainty, and disturbance satisfying some conditions. This paper is extended from the results of the static output feedback VSS in [9]. To effectively remove the reaching phase problems, an initial condition of the dynamic output is determined. The previous some limitations on the dynamic output feedback variable structure controller is overcome in this systematic design. A stabilizing control is designed to generate the sliding mode on the predetermined sliding surface S=0 and as a results the closed loop exponential stability is obtained and proved together with the existence condition of the sliding mode on S=0 for all unmatched system matrix uncertainties. To show the usefulness of the algorithm, a design example and computer simulations are presented.

구경 플랜트에 대한 강건한 레귤레이터의 설계 (Robust Regulator Design for an Interval Plant)

  • 김기두;김석중;조한유
    • 전자공학회논문지B
    • /
    • 제31B권8호
    • /
    • pp.64-73
    • /
    • 1994
  • In this paper we present an algorithmic technique for determining a feedback compensator which will stabilize the interval dynamic system specifically the robust regulator design for interval plants. The approach taken here is to allow the system parameters to live within prescribed intervals then design a dynamic feedback compensator which guarantees closed-loop system stable. The main contribution of this paper is the idea of introducting a "simplified Kharitonov`s results" for low order polynomials to search for suitable compensator parameters in the compensator parammeter space to make the uncertain system robust. We also design the robust regulator which will $D_{\phi}$ -stabilize (have the closed-loop poles in the left sector only) the dynamic interval system while having good performance. the numerical examples are given to show the substantially improved robustness which results from our approach.

  • PDF

엔진 마운트의 동특성 해석 및 최적설계 (Dynamic Analysis and Optimal Design of Engine Mount Systems)

  • 임홍재;성상준;이제형;조은수;이상범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1877-1882
    • /
    • 2000
  • In this paper, an integrated system for dynamic analysis and optimal design of engine mount systems is presented. The system can simulate static and dynamic behaviors of engine mount systems and optimize design parameters such as mount stiffness, mounting locations with desired design targets of frequency or displacement. A FF-engine with an automatic transmission is used to demonstrate the analysis and optimal design capabilities of the proposed design system.

  • PDF

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.

동적 민감도 해석을 이용한 판토그래프의 동특성 개선 (Improving the Dynamic Characteristics of the Pantograph Using the Sensitivity Analysis)

  • 김진우;박동진;왕영용;한창수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.679-685
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analysis of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. In order to consider the design variables that effects on the dynamic characteristic of the pantograph system performed the dynamic sensitivity analysis. From the pantograph-catenary analysis, the design parameters of a pantograph could be improved. From the results of the sensitivity analysis, a pantograph with improved parameters is suitable for a high-speed rail vehicle from the design-parameter analysis.

  • PDF

레일형 보행보조기구의 방향전환을 위한 턴 롤러 시스템 개발 (Development of the Turn Roller System for Changing the Direction of Rail-type Gait Training System)

  • 김지욱;양민석;우준우;김민수;손정현;정부환
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.19-25
    • /
    • 2016
  • It is needed to use the gait training system for the rehabilitation of the disabled and old people. In this study, a gait training system of turn roller type is proposed for the purpose of helping the rehabilitation. A driving mechanism with the turn roller is designed by using the RecurDyn which is the dynamic analysis program. RecurDyn is used to analyze the dynamic behavior of the gait training system. The static load analysis is carried out to investigate the safety of this system. From the operating test of this system, it is noted that the driving error is little and the load capacity is 130 kgf.

고속프레스의 다이나믹 시스템 및 방진시스템 설계에 관한 연구 (A Study on the Design of Dynamic System and Vibration Isolation System in a High-speed Press)

  • 서진성;정철재;현기용;류민
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.856-865
    • /
    • 2015
  • In a high-speed press, numerous moving links are interconnected and each link executes a constrained motion at high speed. As a consequence, high-level dynamic unbalance force and unbalance moment are transmitted to the main frame of the press, which results in unwanted vibration and significantly degrades manufacturing accuracy. Dynamic unbalance force and unbalance moment inevitably transmits high-level vibrational force to the foundation on which the press is installed. Minimizing the vibrational force transmitted to the foundation is critical for the protection of both the operators and the surrounding structures. The whole task should be carried out in two steps. The first step is to reduce dynamic unbalance based upon kinematic and dynamic analyses. The second step is to design and build an optimal vibration isolation system minimizing the vibrational force transmitted to the foundation. Firstly, the dynamic design method is presented to reduce dynamic unbalance force and moment. For this a 3D CAD software was utilized and a computer program was written to compute dynamic unbalance force and moment. Secondly, the design method for vibration isolation system is presented. The method for designing coil springs and viscous dampers are explained in detail.