• Title/Summary/Keyword: Dynamic Behaviors

Search Result 1,216, Processing Time 0.023 seconds

Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.545-554
    • /
    • 2020
  • The present paper explores nonlinear dynamical properties of piezo-magnetic beams based on a nonlocal refined higher-order beam formulation and piezoelectric phase effect. The piezoelectric phase increment may lead to improved vibrational behaviors for the smart beams subjected to magnetic fields and external harmonic excitation. Nonlinear governing equations of a nonlocal intelligent beam have been achieved based upon the refined beam model and a numerical provided has been introduced to calculate nonlinear vibrational curves. The present study indicates that variation in the volume fraction of piezoelectric ingredient has a substantial impact on vibrational behaviors of intelligent nanobeam under electrical and magnetic fields. Also, it can be seen that nonlinear free/forced vibrational behaviors of intelligent nanobeam have dependency on the magnitudes of induced electrical voltages, magnetic potential, stiffening elastic substrate and shear deformation.

Dynamic Paralleling Behaviors of High Power Trench and Fieldstop IGBTs

  • Wu, Yu;Sun, Yaojie;Lin, Yandan
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.788-795
    • /
    • 2014
  • This paper demonstrates the dynamic behaviors of paralleled high power IGBTs using trench and fieldstop technologies. Four IGBTs are paralleled and standard deviation is adopted to represent the imbalance. Experiments are conducted under three different operation conditions and at different temperatures ranging from $-25^{\circ}C$ to $125^{\circ}C$. The experimental results show that operation at very low and very high temperatures usually aggravates the switching behaviors. There is a trade-off between the balance and the losses at low temperatures. These results can help in the design of heat sinks in paralleling applications confronting very low temperatures.

Dynamic analysis of a launcher under impulsive forces (충격력을 받는 발사대의 동역학적 해석)

  • 이병훈;유완석;김준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.84-91
    • /
    • 1993
  • The dynamic behaviors of a launcher under impulsive forces are analyzed. All the components of the system, ie ; chassis, turret, cage and suspension parts, are modeled as rigid. The dynamic analysis code, which is developed with the formulae describing the system equations of motion in terms of relative quantities, is used to carry out the analysis. The results show the dynamic responses of chassis and cage when the driving constraints are imposed on turret and cage.

  • PDF

A study on the dynamic behavior of Extradosed PSC railway bridge (Extradosed PSC 철도교의 동적거동에 관한 연구)

  • Gill Tae-Soo;Kim Sung-Il;Kim Youn-Tae
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1248-1253
    • /
    • 2005
  • The study is indispensable for the dynamic behaviors because this Cable-stayed long span bridge ; has a more flexible structure than normal bridge can have weaknesses which are impact factor, deflection and defectives etc. This study analyze the dynamic behavior by an analysis of the moving constant train force on railway with Midas/Civil that is a commercial finite element analysis tool about Extradosed PSC Bridge. Also it will be checked the dynamic behavior features and standard of the dynamic capability.

  • PDF

A Study on the Characteristics of Dynamic Behaviors for the Spatial Structures using Equivalent Lumped Mass Model (중간 면진층을 가지는 래티스 돔 구조물의 병렬 다질점계 등가모델을 이용한 동적 거동 특성에 관한 연구)

  • Han Sang-Eul;Lee Sang-Ju;Kim Min-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.187-194
    • /
    • 2006
  • Generally, earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for stability In this paper, the spatial structures are applied an isolation system to boundary parts between roof systems and sub-structures. So, it is necessary to examine the characteristics of dynamic behaviors of spatial structures governed by higher modes rather than lower modes different from the cases of high-rise buildings. The objectives of this paper are to develop the equivalent lumped mass model to simplify an analytical processes and to investigate the dynamic behaviors of roof systems according to the mass and stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

Hydraulic Characteristics and Dynamic Behaviors of Floating Breakwater with Vertical Plates (연직판형 부소파제의 수리학적 특성과 동적거동)

  • SOHN Byung-Kyu;YANG Yong-Su;JEONG Seong-Jae;SHIN Jong-Keon;KIM Do-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.5
    • /
    • pp.316-322
    • /
    • 2005
  • In order to develop a floating breakwater, which can efficiently control long period waves, vertical plates are attached in pontoon. Wave control and dynamic behaviors of the newly developed vertical plates type are verified from numerical analysis and hydraulic experiment. As a result, for the wave control and energy dissipation, the newly developed vertical plates type is more efficient than the conventional pontoon type. For the floating body motion, the wave transmission, depending on incident wave period, is decreased at the natural frequency. Dimensionless drift distance has similar trend of the reflection rate of wave transformation near natural frequency except maximum and minimum values. Dimensionless maximum tension is 17 percent of the weight of floating breakwater in case of the conventional pontoon type and 18 percent or 14 percent in case of the newly developed vertical plates type. Thus, it is shown that the wave control is improved by the vertical plates type. In addition, by adjusting the interval of the front and back vertical plate, we would control proper wave control.

The Characteristics of Dynamic Behaviors for the Spatial Structures under Seismic Loads (지진하중을 받는 대공간 구조물의 동적 거동 특성)

  • Kim Min-Sik;Lee Sang-Ju;Lee Dong-Woo;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.628-635
    • /
    • 2005
  • The earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for the stability For those purposes, recently, the seismic isolation system to reduce earthquake energy has been used. So, it is necessary to examine the characteristics of dynamic behavior of spatial structures governed by higher modes rather than lower modes different from the cases of high rise buildings. The objectives of this paper are to inspect the efficiency of the equivalent model method according to the various earthquake loads and half-open angles. Moreover it is examined the dynamic behaviors according to change the mass and the stiffness of sub-structures as a fundamental study of performance design for the spatial structures. Finally, seismic isolation system is applied to boundary parts of roof system and sub-structure to obtain the target performance.

  • PDF

Spectral Element Method for the Dynamic Behaviors of Plate (스펙트럴요소법을 이용한 평판의 동적거동해석)

  • 이상희;이준근;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.328-334
    • /
    • 1996
  • Finite Element Method(FEM) is the most popularly used method in analyzing the dynamic behaviors of structures. But unless the number of finite elements is large enough, the results from FEM are somewhat different from exact analytical solutions, especially at high frequency range. On the other hand, as the Spectral Element Method(SEM) deals directly with the governing equations of structures, the results from this method cannot but be exact regardless of any frequency range. However, despite two dimensional structures are more general, the SEM has been applied only to the analysis of one dimensional structures so far. In this paper, therefore, new methodologies are introduced to analyze the two dimensional plate using SEM. The results from this new method are compared with the exact analytical solutions by letting the two dimensional plate be one dimensional one and showed the dynamic responses of two dimensional plate by including various waves propagated into x-direction.

  • PDF

A Study on the Dynamic Behaviors of Plate Structure Using Spectral Element Method (스펙트럴소법을 이용한 평판의 동적거동 해석)

  • 이우식;이준근;이상희
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.617-624
    • /
    • 1996
  • Finite Element Method(FEM) is one of the most popularly used method in analyzing the dynamic behaviors of structures. But unless the number of finite elements is large enough, the results from FEM are somewhat different form exact analytical solutions, especially at high frequency range. On the other hand, as the Spectral Element Method(SEM) deals directly with the governing equations of structures, the results from this method cannot but be exact regardless of any frequency range. However, despite two dimensional structures are more general, the SEM has been applied only to the analysis of one dimensional structures so far. In this paper, therefore, new methodologies are introduced to analyze the two dimensional plate structure using SEM. The results from this new method are compared with the exact analytical solutions by letting the two dimensional plate structure be one dimensional and showed the dynamic responses of two dimensional plate by including various waves propagated into x-direction.

  • PDF

Study of the Film Thickness Behaviors in the Elastohydrodynamic Lubrication of Circular Contact under the Dynamic Loading Condition with Multigrid Multilevel Method (변동하중 조건에서 점접촉 탄성유체윤활의 유막거동 연구)

  • Cho, Jae-Cheol;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.367-373
    • /
    • 2009
  • Many research of elastohydrodynamic lubrication (EHL) has been performed under the condition of steady state loading. However, mechanical elements undergo severe high loads that are in the fluctuating modes of frequency and amplitude. Conventional numerical method for the circular contact of EHL study has the difficulty in making the film thickness and pressure of EHL converged in high loads of steady state as well as fluctuating loading conditions. In this work, multigrid multilevel method are used for the stable convergence of film pressure and thickness under the conditions of high as well as varying loads, and very stable solutions of film behaviors with elastic deformation are obtained. Several results of dynamic loading condition are shown and compared with those of steady state condition in the aspects of circular EHL film thickness and pressure.