• Title/Summary/Keyword: Dye-sensitized Solar cell

Search Result 426, Processing Time 0.023 seconds

Enhancement of Dye-Sensitized Solar Cell Efficiency by Spherical Voids in Nanocrystalline ZnO Electrodes

  • Hieu, Hoang Nhat;Dao, Van-Duong;Vuong, Nguyen Minh;Kim, Dojin;Choi, Ho-Suk
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.458-464
    • /
    • 2014
  • Light scattering enhancement is widely used to enhance the optical absorption efficiency of dye-sensitized solar cells. In this work, we systematically analyzed the effects of spherical voids distributed as light-scattering centers in photoanode films made of an assembly of zinc oxide nanoparticles. Spherical voids in electrode films were formed using a sacrificial template of polystyrene (PS) spheres. The diameter and volume concentration of these spheres was varied to optimize the efficiency of dye-sensitized solar cells. The effects of film thickness on this efficiency was also examined. Electrochemical impedance spectroscopy was performed to study electron transport in the electrodes. The highest power conversion efficiency of 4.07 % was observed with $12{\mu}m$ film thickness. This relatively low optimum thickness of the electrode film is due to the enhanced light absorption caused by the light scattering centers of voids distributed in the film.

Synthesis of TCO-free Dye-sensitized Solar Cells with Nanoporous Ti Electrodes Using RF Magnetron Sputtering Technology

  • Kim, Doo-Hwan;Heo, Jong-Hyun;Kwak, Dong-Joo;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.146-150
    • /
    • 2010
  • A new type of dye-sensitized solar cell (DSC) based on a porous type Ti electrode without using a transparent conductive oxide (TCO) layer is fabricated for low-cost high-efficient solar cell application. The TCO-free DSC is composed of a glass substrate/dye-sensitized $TiO_2$ nanoparticle/porous Ti layer/electrolyte/Pt sputtered counter electrode. The porous Ti electrode (~350 nm thickness) with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3{^-}$ through the hole. The vacuum annealing treatment is important with respect to the interfacial necking between the metal Ti and porous $TiO_2$ layer. The efficiency of the prepared TCO-free DSC sample is about 3.5% (ff: 0.48, $V_{oc}$: 0.64V, $J_{sc}$: 11.14 mA/$cm^2$).

Structure and Characteristics of Tandem Solar Cell Composed of Dye-sensitized Solar Cell and Thermoelectric Generator (염료감응형 태양전지와 열전발전소자를 결합한 복합 태양전지의 구조 및 특성)

  • Lee, Dong-Yoon;Song, Jae-Sung;Lee, Won-Jae;Kim, In-Sung;Jeong, Soon-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.357-362
    • /
    • 2005
  • The tandem solar cell composed of a dye-sensitized solar cell (DSC) and a thermoelectric generator (TEG) was designed. In such new cell, the characteristics of DSC and TEG were investigated. DSC uses the wavelength range of 380∼750 nm and has the maximum efficiency of below 10 %. If the solar light transmitted through DSC can be converted to heat energy, TEG can generate electric energy using this heat energy. By this means, it is possible to utilize most of solar energy in the wavelength range of 350∼3000 nm for electric generation and it can be expected to obtain higher solar energy conversion efficiency exceeding the known limit of maximum efficiency. For this purpose we suggest the tandem solar cell constructed with DSC and TEG. In this structure, DSC has a carbon nanotube film as a counter electrode of DSC in order to collect the solar light and convert it to heat energy. We measured the I-V characteristics of DSC and TEG, assembled to the tandem cell. As a result, it was shown that DSC with carbon nanotube and TEG had the efficiency of 9.1 % and 6.2 %, respectively. From this results, it is expected that the tandem solar cell of the new design has the possibility of enhanced conversion efficiency to exceed above 15 %.

A Study on the Improvement of the Efficiency of Dye-sensitized Solar Cell using the Laser Scribing and the Grid Electrode (레이저 식각 및 그리드 전극을 적용한 염료감응형 태양전지의 효율 향상 연구)

  • Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyung-Jun;Kim, Jeong-Hoon;Hong, Ji-Tae;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1802-1806
    • /
    • 2008
  • Dye-sensitized solar cell (DSC) based on some advantages such as transparency, cheap materials and anti-sensibility for an anlge of incidence has been expected to capture most of solar cell market in the near future. To practical use of DSC, researches on high efficiency as well as upscaling are necessary. In this study, we tried to insert the grid electrode in DSC and scribe transparent conducting oxide (TCO) using Nd:YAG laser. The grid electrode makes the electron movement improved and diffusional movement minimized. Consequently, the efficiency of DSC was increased by reducing electron loss and the surface resistance of TCO. The grid electrode was made using Ag target by radio frequency sputtering. And the scribed surface was confirmed by taking a scanning electron microscopy photos. As the result, grid cell had improved photocurrent and fill factor as compared with the conventional cell. And the efficiency was increased about 1% by enhanced photocurrent and fill factor.

A study on the characteristic of Dye-sensitized solar cell with mesh structure of counter electrode (Mesh구조의 상대전극을 갖는 염료감응형태양전지의 특성연구)

  • Jang, Jin-Ju;Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyoung-Jun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.131-133
    • /
    • 2008
  • A serious problem of the 21st century is the supply of energy resources. Reserves of fossil fuels are facing depletion: renewable energy resources must be developed in this era. Dye sensitized solar cell (DSC) has been very economical and easy method to convert solar energy to electricity. Recently a novel tandem cell structure is proposed to improve photocurrent of DSC. To fabricated a tandem cell, the mesh structure of counter electrode is essential for the improvement in transmittance. In this study, we conducted the experiment to get the characteristic of DSC with mesh counter electrode. Under the standard test condition (AM 1.5, 100mW/$cm^2$), we obtained the maximum efficiency of 3.41% and the transmittance of 72% in the DSC with mesh counter electrode.

  • PDF

Materials and Compartments for Flexible Dye Sensitized Solar Cell (유연 염료감응 태양전지 소재 및 요소기술 동향)

  • Jung, In-Soo;Park, Byung-Wook;Lee, Jae-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.86-94
    • /
    • 2015
  • In order to solve incoming environmental crisis and an energy crunch caused by the consumption of fossil fuels, lots of investigations and developments for solar cell application are getting a spotlight in various aspects. Amongst many solar cells, a flexible dye sensitized solar cell is an attractive research field from fundamentals to commercialization. In this manuscript, we introduce materials and available techniques for the future scientific research and technical developments in commercialization.

Enhancement of the Light Harvesting of Dye-sensitized Solar Cell by Inserting Scattering Layer (중간 광전극에 삽입된 산란층에 의한 염료감응 태양전지의 광수집 성능 향상)

  • Nam, Jung-Gyu;Kim, Bum-Sung;Lee, Jai-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.305-309
    • /
    • 2009
  • The effect of light scattering layers (400 nm, TiO$_2$ particle) of 4 $\mu$m thickness on the dye-sensitized solar cell has been investigated with a 12 $\mu$m thickness of photo-anode (20 nm, TiO$_2$ particle). Two different structures of scattering layers (separated and back) were applied to investigate the light transmitting behaviors and solar cell properties. The light transmittance and cell efficiency significantly improved with inserting scattering layers. The back scattering layer structure had more effective transmitting behavior, but separated scattering layer (center: 2 $\mu$m, back: 2 $\mu$m) structure (9.83% of efficiency) showing higher efficiency (0.6%), short circuit current density (0.26 mA/cm$^2$) and fill factor (0.02). The inserting separating two scattering layers improved the light harvesting, and relatively thin back scattering layer (2 $\mu$m of thickness) minimized interruption of ion diffusion in liquid electrolyte.

The Preparation of Alumina Particles Wrapped in Few-layer Graphene Sheets and Their Application to Dye-sensitized Solar Cells

  • Ahn, Kwang-Soon;Seo, Sang-Won;Park, Jeong-Hyun;Min, Bong-Ki;Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1579-1582
    • /
    • 2011
  • Alumina particles wrapped in few-layer graphene sheets were prepared by calcining aluminum nitride powders under a mixed gas flow of carbon monoxide and argon. The graphene sheets were characterized by powder X-ray diffraction (XRD), Raman spectroscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The few-layer graphene sheets, which wrapped around the alumina particles, did not exhibit any diffraction peaks in the XRD patterns but did show three characteristic bands (D, G, and 2D bands) in the Raman spectra. The dye-sensitized solar cell (DSSC) with the alumina particles wrapped in few-layer graphene sheets exhibited significantly improved overall energy-conversion efficiency, compared to conventional DSSC, due to longer electron lifetime.

The effect incident angle of the Pt film on a counter electrode for dye-sensitized solar cells (염료감응형 태양전지의 상대전극 경사코팅을 통한 효율 개선 연구)

  • Lee, Kyoung-Jun;Seo, Hyun-Woong;Son, Min-Kyu;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.419-421
    • /
    • 2008
  • Sputter deposition on a Pt counter electrode was studied using RF plasma as the improvement of conversion efficiency for dye-sensitized solar cells (DSC). The effects of the sputtering thickness and incident angle on a Pt counter electrode for DSC was scrutinized. We conducted the experiment to get the optimal sputtering time for the performance of the DSC. Under the sputtering time condition of 120 seconds, we varied the incident angles of substrate from $0^{\circ}$ to $60^{\circ}$. Under standard test condition (AM 1.5, 100mW/$cm^2$), we obtained the maximum efficiency of 4.61% at the incident angle of $40^{\circ}$ with an active cell area of $1cm^2$.

  • PDF

Synthesis of TCO-Iess Dye Sensitized Solar Cell (TCO-Iess 구조 염료 태양전지의 제작과 광전변환 특성)

  • Heo, Jong-Hyun;Park, Sun-Hee;Kwak, Dong-Joo;Sung, YouI-Moon;Song, Jae-Eun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.251-254
    • /
    • 2009
  • A new type of dye-sensitized solar cells(DSCs) based on Ti-mesh electrode without using TCO layer is fabricated for high-efficient and low-cost solar cell application. The TCO-Iess DSCs sample is composed of a [glass/ dye sensitized $TiO_2$ layer/ Ti-mesh electrode/ electrolyte/ metal counter electrode]. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3{^-}$ through the mesh hole. Thin Ti-mesh (${\sim}40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. Electrical performance of as-fabricated DSCs is presented and discussed in detail.

  • PDF