DOI QR코드

DOI QR Code

Materials and Compartments for Flexible Dye Sensitized Solar Cell

유연 염료감응 태양전지 소재 및 요소기술 동향

  • Jung, In-Soo (Nanotechnology Research Center & Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University) ;
  • Park, Byung-Wook (Nanotechnology Research Center & Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University) ;
  • Lee, Jae-Joon (Nanotechnology Research Center & Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University)
  • 정인수 (건국대학교 나노기술연구센터, 건국대학교 의생명화학과) ;
  • 박병욱 (건국대학교 나노기술연구센터, 건국대학교 의생명화학과) ;
  • 이재준 (건국대학교 나노기술연구센터, 건국대학교 의생명화학과)
  • Received : 2015.05.12
  • Accepted : 2015.05.26
  • Published : 2015.05.31

Abstract

In order to solve incoming environmental crisis and an energy crunch caused by the consumption of fossil fuels, lots of investigations and developments for solar cell application are getting a spotlight in various aspects. Amongst many solar cells, a flexible dye sensitized solar cell is an attractive research field from fundamentals to commercialization. In this manuscript, we introduce materials and available techniques for the future scientific research and technical developments in commercialization.

전세계적으로 화석에너지의 고갈로 인한 환경문제의 도래와 에너지 부족문제를 해결하기 위하여, 다양한 각도에서 태양전지의 개발이 추진되고 있다. 그 중에서도 유연염료감응태양전지의 개발은 그 활용도가 높고, 낮은 생산단가로 인하여 그 상용화에 더욱 가까운 연구 테마라고 하겠다. 여기서는 유연태양전지 분야의 연구 동향 및 최신 기술 및 재료들을 소개함으로써 앞으로의 연구방향을 제시하고자 한다.

Keywords

References

  1. G. Smestad, "Nanocrystalline Solar Cell Kit", Institute for Chemical Education in the University of Wisconsin, p. 17, (1998).
  2. M. K. Nazeeruddin, P. Pe'chy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, M. 'Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline $TiO_2$-Based Solar Cells', J. Am. Chem. Soc., 123, 1613 (2001). https://doi.org/10.1021/ja003299u
  3. G. Schlichthorl, S. Y. Huang , J. Sprague, A. J. Frank, 'Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline $TiO_2$ Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy', J. Phys. Chem. B, 101, 8141 (1997). https://doi.org/10.1021/jp9714126
  4. K. Okada, H. Matsui, T. Kawashima, T. Ezure, and N. Tanabe, '$100\;mm{\times}100\;mm$ large-sized dye sensitized solar cells', J. Photochem. and Photobio. A: Chem., 164, 193 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.028
  5. S. Takenaka, Y. Maehara, H. Imai, M. Yoshikawa, and S. Shiratori, 'Layer-by-layer self-assembly replication technique: application to photoelectrode of dye-sensitized solar cell', Thin Solid Films, 346, 438-439 (2003).
  6. M. Gratzel, 'Dye-sensitized solar cells', J. Photochem. and Photobio. C: Photochem., Reviews 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  7. S. Ito, T. Kitamura, Y. Yanagida, 'Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating Original Research Article', S. Solar Energy Mater. & Solar Cells, 76, 3-13 (2003). https://doi.org/10.1016/S0927-0248(02)00209-X
  8. D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys., 25, 676 (1954). https://doi.org/10.1063/1.1721711
  9. J. S. Connolly, 'Notiz uber Verstarkung photoelectrischer Strome durch potische Sensibilisirung', Academic press, (1981).
  10. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, 'Dye sensitised zinc oxide: aqueous electrolyte:platinum photocell', Nature (London), 261 (1976).
  11. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, and M. Gratzel, 'Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers', Nature Chemistry, 6, 242-247 (2014). https://doi.org/10.1038/nchem.1861
  12. J. Kalowekamo and E. Baker, 'Estimating the manufacturing cost of purely organic solar cells', Solar Energy, 83, 1224-31 (2009). https://doi.org/10.1016/j.solener.2009.02.003
  13. Murakami and M. Graetzel, 'Counter electrodes for application of functional materials as catalysts', Inorg Chim Acta., 361, 572-80 (2008). https://doi.org/10.1016/j.ica.2007.09.025
  14. M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasakam, 'Improvement in durability of flexible plastic dye-sensitized solar cell modules', Sol. Energy Mater. Sol. Cells, 93, 836-9 (2009). https://doi.org/10.1016/j.solmat.2008.09.051
  15. K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, 'The superiority of Ti plate as the substrate of dye-sensitized solar cells', Sol Energy Mater Sol Cells, 91, 1176-81 (2007). https://doi.org/10.1016/j.solmat.2006.12.017
  16. T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, 'Properties of several types of novel counter electrodes for dye-sensitized solar cells', J. Electroanal Chem., 574(1), 77-83 (2004). https://doi.org/10.1016/j.jelechem.2004.08.002
  17. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, 'Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells', Thin Solid Films, 472, 242-5 (2005). https://doi.org/10.1016/j.tsf.2004.07.083
  18. M. Toivola, F. Ahlskog, and P. Lund, 'Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures', Sol. Energy Mater. Sol. Cells, 90, 2881-93 (2006). https://doi.org/10.1016/j.solmat.2006.05.002
  19. K. Miettunen, J. Halme, M. Toivola, and P. Lund, 'Initial performance of dye solar cells on stainless steel substrates', J. Phys Chem. C., 112, 4011-7 (2008).
  20. S. Ngamsinlapasathian, K. Onoda, T. Takayasu, T. Sagawa, and S. Yoshikawa, Meeting Abstracts, 1001, 473 (2010).
  21. H. Wang, Y. Liu, H. Xu, X. Dong, H. Shen, Y. Wang, et al., 'An investigation on the novel structure of dye-sensitized solar cell with integrated photoanode', Renewable Energy, 34, 1635-8 (2009). https://doi.org/10.1016/j.renene.2008.10.023
  22. A. D. Pasquier, M. Stewart, T. Spitler, and M. Coleman, 'Aqueous coating of effcient flexible TiO2 dye solar cell photoanodes', Sol. Energy Mater. Sol. Cells, 93, 528-35 (2009). https://doi.org/10.1016/j.solmat.2008.10.029
  23. M. Toivola, J. Halme, K. Miettunen, K. Aitola, P. D. Lund, 'Nanostructured dye solar cells on flexible substrates - review', Int. J. Energy Res., 33, 1145-60 (2009). https://doi.org/10.1002/er.1605
  24. K. Miettunen, J. Halme, and P. Lund, 'Segmented cell design for improved factoring of aging effects in dye solar cells', J. Phys Chem. C., 113, 10297-302 (2009). https://doi.org/10.1021/jp902974v
  25. G. Gruner. 'Carbon nanotube films for transparent and plastic electronics', J. Mater. Chem., 16, 3533-9 (2006). https://doi.org/10.1039/b603821m
  26. B. G. Lewis and D. C. Paine, 'Transparent conductive oxides' MRS Bull, 25, 22 (2000).
  27. S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., 'High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode', Chem. Commun (Cambridge, UK), 38, 4004-6 (2006).
  28. J. H. Park, Y. Jun, H. Yun, S. Lee, and M. G. Kang, 'Fabrication of an efficient dye sensitized solar cell with stainless steel substrate', J. Electrochem. Soc., 155(7), F145-9 (2008). https://doi.org/10.1149/1.2909548
  29. M. G. Kang, N. Park, K. S. Ryu, S. H. Chang, and K. A. Kim, '4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate', Sol. Energy Mater Sol. Cells, 903, 574-81 (2006).
  30. K. Miettunen, X. Ruan, T. Saukkonen, J. Halme, M. Toivola, H. Guangsheng, et al. 'Stability of dye solar cells with photoelectrode on metal substrates', J. Elec trochem. Soc., 157, B814-9 (2010). https://doi.org/10.1149/1.3374645
  31. N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, and Y. J. Shin, 'Chemical Sintering of Nanoparticles: A Methodology for Low-Temperature Fabrication of Dye-Sensitized $TiO_2$ Films', Adv. Mater., 17, 2349 (2005). https://doi.org/10.1002/adma.200500288
  32. Y. Kijitori, M. Ikegami, and T. Miyasaka. 'Highly Efficient Plastic Dye-sensitized Photoelectrodes Prepared by Low-temperature Binder-free Coating of Mesoscopic Titania Pastes', Chem. Lett. 36, 190 (2007). https://doi.org/10.1246/cl.2007.190
  33. Y. I. Li, W. J. Lee, D. K. Lee, K. K. Kim, N. G. Park, and M. J. Ko, 'Pure anatase $TiO_2$ "nanoglue": An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells', Applied Physics Letters, 98, 103301 (2011). https://doi.org/10.1063/1.3562030
  34. T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, 'Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of $TiO_2$ photoelectrodes', Chem. Commun. Camb., 45, 4767 (2007).
  35. D. Zhang, T. Yoshida, and H. Minoura. 'Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface', Adv Mater (Weinheim, Germany), 15(10), 814-7 (2003). https://doi.org/10.1002/adma.200304561
  36. T. Oekermann, D. S. Zhang, T. Yoshida, and H. Minoura. 'Electron Transport and Back Reaction in Nanocrystalline $TiO_2$ Films Prepared by Hydrothermal Crystallization', J. Phys. Chem. B, 108, 2227 (2004). https://doi.org/10.1021/jp034918z
  37. D. S. Zhang, T. Yoshida, T. Oekermann, K. Furuta, and H. Minoura. 'Room-Temperature Synthesis of Porous Nanoparticulate $TiO_2$ Films for Flexible Dye-Sensitized Solar Cells', Adv. Funct. Mater., 16, 1228 (2006). https://doi.org/10.1002/adfm.200500700
  38. T. Miyasaka and Y. Kijitori, 'Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous $TiO_2$ Layers', J. Electrochem. Soc., 151, A1767 (2004). https://doi.org/10.1149/1.1796931
  39. J. H. Yum, S. S. Kim, D. Y. Kim, and Y. E. Sung, 'Electrophoretically deposited $TiO_2$ photo-electrodes for use in flexible dye-sensitized solar cells', J. Photochem. Photobiol., A 173, 1 (2005). https://doi.org/10.1016/j.jphotochem.2004.12.023
  40. S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, 'Flexible dye-sensitized solar cells by 28 GHz microwave irradiation', J. Photochem. Photobiol., A 164, 93 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.026
  41. D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-Fenollosa, X. Domenech, and J. A. Ayllon, 'New low-temperature preparation method of the $TiO_2$ porous photoelectrode for dye-sensitized solar cells using UV irradiation', J. Photochem. Photobiol., A 175, 165 (2005). https://doi.org/10.1016/j.jphotochem.2005.04.031
  42. Y. L. Li, D. Y. Lee, S. R. Min, H. N. Cho, J. S. Kim, and C. W. Chung, 'Effect of Oxygen Concentration on Properties of Indium Zinc Oxide Thin Films for Flexible Dye-Sensitized Solar Cell', Jpn. J. Appl. Phys., 47, 6896 (2008). https://doi.org/10.1143/JJAP.47.6896
  43. M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles. 'Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers', Nature Mater., 4, 607 (2005). https://doi.org/10.1038/nmat1433
  44. D. Zhang, T. Yoshida, and H. Minoura, 'Low temperature synthesis of porous nanocrystalline $TiO_2$ thick film for dye-sensitized solar cells by hydrothermal crystallization', Chem. Lett., 9, 874-5 (2002).
  45. T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, 'UV light-assisted chemical vapor deposition of $TiO_2$ for efficiency development at dye-sensitized mesoporous layers on plastic film electrodes', Chem. Lett., 32, 1076-7 (2003). https://doi.org/10.1246/cl.2003.1076
  46. H. Kim, A. Pique, G. P. Kushto, R. C. Y. Auyeung, S. H. Lee, C. B. Arnold, et al., 'Dye sensitized solar cells using laser processing techniques', In: Proc SPIE-Int Soc Opt Eng. 2004 [5339 (Photon Processing in Microelectronics and Photonics III), 348-56
  47. H. Pan, S. H. Ko, N. Misra, and C. P. Grigoropoulos, 'Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics', Appl. Phys. Lett., 94, 071117/1-3 (2009). https://doi.org/10.1063/1.3082095
  48. T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, 'Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion effciency of 7.6%', Sol. Energy Mater. Sol. Cells, 94, 812-6 (2010). https://doi.org/10.1016/j.solmat.2009.12.029
  49. F. Pichot, J. R. Pitts, and B. A. Gregg, 'Low-temperature sintering of $TiO_2$ colloids: application to flexible dye-sensitized solar cells', Langmuir, 16(13), 5626-30 (2000). https://doi.org/10.1021/la000095i
  50. T. Miyasaka, M. Ikegami, and Y. Kijitori, 'Photovoltaic performance of plastic dye sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania', J. Electrochem. Soc., 154, A455-61.49 (2007). https://doi.org/10.1149/1.2712140
  51. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, 'A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte', Nature Materials, 2, 402-407 (2003). https://doi.org/10.1038/nmat904
  52. S. J. Park, K.-C. Yoo, J.-Y. Kim, J. Y. Kim, D.-K. Lee, B. S. Kim, H. G. Kim, J. H. Kim, J. H. Cho, and M. J. Ko, 'Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells', ACS Nano, 7, 4050-4056 (2013). https://doi.org/10.1021/nn4001269
  53. C.-L. Chen, H. Teng, and Y.-L. Lee, 'In Situ Gelation of Electrolytes for Highly Efficient Gel-State Dye-Sensitized Solar Cells', Advanced Materials, 23(36), 4199-4204 (2011). https://doi.org/10.1002/adma.201101448
  54. D. K. Roh, W. S. Chi, H. R. Jeon, S. J. Kim, and J. H. Kim, 'High Efficiency Solid-State Dye-Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Tree-like $TiO_2$ Nanotubes', 24(3) 379-386 (2014). https://doi.org/10.1002/adfm.201301562
  55. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, 'Solid-state dye-sensitized mesoporous $TiO_2$ solar cells with high photon-to-electron conversion efficiencies', Nature, 395, 583-585 (1998). https://doi.org/10.1038/26936
  56. N. Cai, S.-J. Moon, Le Cevey-Ha, T. Moehl, R. H. Baker, P. Wang, S. M. Zakeeruddin, and M. Gratzel, 'An Organic D-${\pi}$-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells', Nano Lett., 11(4), 1452-1456 (2011). https://doi.org/10.1021/nl104034e
  57. E. Johansson, A. Sandell, H. Siegbahn, H. Rensmo, B. Mahrov, et al., 'Interfacial Properties of Photovoltaic $TiO_2$/dye/PEDOT-PSS Heterojunctions' Synthetic metals, 149, 157-167 (2005). https://doi.org/10.1016/j.synthmet.2004.12.004
  58. L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, 'Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells' Physical Chemistry, Chemical Physics, 14, 779-789 (2012). https://doi.org/10.1039/C1CP23031J
  59. B.-W. Park, L. Yang, E. M. J. Johansson, N. Vlachopoulos, A. Chams, C. Perruchot, M. Jouini, G. Boschloo, and A. Hagfeldt, 'Neutral, Polaron and Bipolaron States in PEDOT Prepared by Photo-electrochemical Polymerization and the Effect on Charge Generation Mechanism in the Solid State Dye Sensitized Solar Cell' The Journal of Physical Chemistry C, 117, 22484-22491 (2013). https://doi.org/10.1021/jp406493v
  60. J. Zhang, L. Yang, Y. Shen, B.-W. Park, Y. Hao, E. M. J. Johansson, G. Boschloo, N. Vlachopoulos, A. Hagfeldt, L. Kloo, E. Gabrielsson, L. Sun, A. Jarboui, C. Perruchot, and M. Jouini, 'Hole transporting material poly (3, 4-ethylenedioxyothiophene) generated from organic and aqueous photoelectrochemical polymerization for an allsolid state dye sensitized solar cell', The Journal of Physical Chemistry C, April, 21, 118, 16591-16601 (2014). https://doi.org/10.1021/jp412504s
  61. L. Yang, J. Zhang, Y. Shen, B.-W. Park, D. Bi, E. M. J. Johansson, G. Boschloo, A. Hagfeldt, C. Perruchot, M. Jouini, and N. Vlachopoulos, 'New Approach for Preparation of Efficient Solid-State Dye-Sensitized Solar Cells by Photoelectrochemical Polymerization in Aqueous Micellar Solution', Journal of Physical Chemistry Letter, 4, 4026-4031 (2013). https://doi.org/10.1021/jz4021266
  62. Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, H. Watanabe, T. Nakamori , and M. Uragami, "Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell", Langmuir, 19, 3572-3574 (2003). https://doi.org/10.1021/la026832n
  63. B. O'Regan, F. Lenzmann, R. Muis, and J. Wienke, 'A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated $P25TiO_2$ and CuSCN: Analysis of Pore Filling and IV Characteristics', Chem. Mater., 14, 5023-5029 (2002). https://doi.org/10.1021/cm020572d
  64. Z. Lan, J. Wu, J. Lin, and M. Huang, 'Morphology controllable fabrication of Pt counter electrodes for highly efficient dye-sensitized solar cells', J. Mater. Chem., 22, 3948-3954 (2012). https://doi.org/10.1039/c2jm15019k
  65. Y. Wang, C. Zhao, D. Qin, M. Wu, W. Liuc, and T. Ma, 'Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells', J. Mater. Chem., 22, 22155-22159 (2012). https://doi.org/10.1039/c2jm35348b
  66. J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, and I. A. Aksay, 'Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells', ACS Nano, 4(10), 6203-6211 (2010) https://doi.org/10.1021/nn1016428
  67. W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, 'Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes', ACS Appl. Mater. Interfaces, 1, 1145-1149 (2009). https://doi.org/10.1021/am800249k
  68. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, and M. Gratzel, 'Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes', J. Electrochem. Soc., 153, A2255-A2261 (2006). https://doi.org/10.1149/1.2358087
  69. B.-W. Park, M. Pazoki, K. Aitola, S. H. Jeong, E. M. J. Johansson, A. Hagfeldt, and G. Boschloo, 'Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells', ACS Appl. Mater. Interfaces, 6, 2074-2079 (2014). https://doi.org/10.1021/am405108d