• Title/Summary/Keyword: Dye decolorization

Search Result 128, Processing Time 0.025 seconds

Degradation of Dye Wastewater by Advanced Oxidation Process: A Comparative Study (고급산화공정에 의한 안료폐수 처리: 비교 연구)

  • Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.67-75
    • /
    • 2006
  • The degradation of Rhodamine B (RhB) in water was investigated in laboratory-scale experiments, using five advanced oxidation Processes (AOPs) $UV/H_2O_2$, lenten, photo-lenten, $UV/TiO_2,\;UV/TiO_2/H_2O_2$. The photodegradation experiments were carried out in a fluidized bed photoreactor equipped with an immersed 32 W UV-C lamp as light source. initial decolorization rate and COD removal efficiency were evaluated and compared. The results obtained showed that the initial decolorization rate constant was quite different for each oxidation process. The relative order of decolorization was: photo-fenton > $UV/TiO_2/H_2O_2$ > fenton > $UV/H_2O_2$ > $UV/TiO_2$ > UV > $H_2O_2$. The relative order of COD removal was different from decolorization: photo-fenten ${\fallingdotseq}$ $UV/TiO_2/H_2O_2\;>\;UV/TiO_2\;>\;fenton\;>\;UV/H_2O_2$. The Photo-lenten and $UV/TiO_2/H_2O_2$ processes seem to be appropriate for decolorization and COD removal of dye wastewater.

Decolorization of a Sulfonated Azo Dye, Congo Red, by Staphylococcus sp. EY-3

  • PARK, EUN-HEE;JANG, MOON-SUN;CHA, IN-HO;CHOI, YONG-LARK;CHO, YOUNG-SU;KIM, CHEORL-HO;LEE, YOUNG-CHOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.221-225
    • /
    • 2005
  • A Staphylococcus sp. EY-3 with the capability of decolorizing Congo Red was isolated from soil at an effluent treatment plant of a textile and dyeing industry. This strain was able to almost completely decolorize a high concentration of Congo Red in 48 h under aerobic conditions. Optimal color removal (more than 96%) was achieved at 30- 40oC, and no noticeable effects of different pH values (5.5- 8.0) on decolorization were observed. This strain also exhibited a remarkable decolorization capability against azo dyes under aerobic conditions, even at a high concentration (dyes 1 g/l) of dye. The metabolic product of Congo Red degradation by this strain was identified by gas chromatography with mass selective detection (GC/MSD) to be an amine derivative benzidine.

Optimization of Anthraquinone Dyes Decolorization Conditions with Response Surface Methodology by Aspergillus

  • Ge, Yufeng;Wei, Bin;Wang, Siyu;Guo, Zhiguo;Xu, Xiaolin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.327-332
    • /
    • 2015
  • A large amount of dye wastewater poses a threat to environmental safety. Disperse blue, an anthraquinone dye that is widely used in textile dyes, is difficult to degrade in wastewater. In this work, one fungus was screened according to the decolorization rate of disperse blue. The fungus was identified and named Aspergillus XJ-2 on the basis of its morphological characteristics and 18s rDNA. Response surface method was used to optimize culture conditions for A. XJ-2. The optimum values of obtained responses were as follows: temperature, $35^{\circ}C$; pH, 5.2; carbon-to-nitrogen ratio, 30:5.5; and rotation ratio, $175r{\cdot}min^{-1}$. Under optimized conditions, the decolorization rate of A. XJ-2 was up to 94.8% in 48 h.

Isolation and Growth Characteristics of Alkalophilic Bacillus sp. for Removal of Anthraquinone Dye. (Anthraquinone계 염료의 제거를 위한 호알칼리성 Bacillus sp.의 분리와 성장 특성)

  • 김정목
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.67-71
    • /
    • 2001
  • Isolation and Growth Characteristics of AIkalophilic Bacillus sp. for Removal of Anthraquinone Dye. Kim, Jeong-Mog. School of Environmental Information, Taekyeung College, Kyungsan, 712-850, Korea -Alkalophilic strain degrading and decolorizing anthraquinone dye, Remazol brilliant blue R was isolated from natural system and named as Bacillus sp. ARB!. The optimal temperature and pH of Bacillus sp. ARBI were 35°C and 9.0, respectively. The pH of culture media during the fermentation were changed from 10 and 10.5 of initial values to 9.3 and 9.4 after 40 hrs, respectively. Decolorization efficiency in aerobic shaking culture of Bacillus sp. ARBI was markedly higher than that in standing culture. At the optimal culture condition, decolorization efficiency by the Bacillus sp. ARBl was 93% after 32 hrs batch culture. In the case of batch culture using real dye processing wastewater, dye decolorization efficiency of Bacillus sp. ARBl was 78% after 40 hrs.

  • PDF

Biodecolorization and Biodegradation of Dye by Fungi: A Review (곰팡이를 이용한 염료의 탈색 및 생분해)

  • Cho, Kyung-Suk;Ryu, Hee Wook
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.203-222
    • /
    • 2015
  • In recent years, there has been an intensive research on the application of degradative activities of fungi for treatment of various non-degradable materials such as petroleum hydrocarbons, polychlorinated biphenyls, pesticides, polycyclic aromatic hydrocarbons, dyes and so on. Chief of all, the fungal treatment technology is received the spotlight as one of the most promising alternatives to replace present methods for the treatment of dye wastewater. The present paper reviews the recent trend in research on the decolorization and biodegradation of dyes by various fungi, and improvements in bioreactors and bioprocesses involved the fungal treatment of dye wastewater. It also discusses alternatives and perspectives for the innovation of mycoremediation to treat dye wastewaters.

Genetic Diversity and Dye-Decolorizing Spectrum of Schizophyllum commune Population

  • Choi, Yongjun;Nguyen, Ha Thi Kim;Lee, Tae Soo;Kim, Jae Kwang;Choi, Jaehyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1525-1535
    • /
    • 2020
  • Synthetic dyes are widely used in various industries and their wastage causes severe environmental problems while being hazardous to human health, leading to the need for eco-friendly degradation techniques. The split-gill fungus Schizophyllum commune, which is found worldwide, has the potential to degrade all components of the lignocellulosic biomass and is a candidate for the treatment of synthetic dyes. A systematic molecular analysis of 75 Korean and 6 foreign S. commune strains has revealed the high genetic diversity of this population and its important contribution to the total diversity of S. commune. We examined the dye decolorization ability of this population and revealed 5 excellent strains that strongly decolorized 3 dyes: Crystal Violet, Congo Red and Methylene Blue. Finally, comparison of dye decolorization ability and the phylogenetic identification of these strains generalized their genetic and physiological diversity. This study provides an initial resource for physiological and genetic research projects as well as the bioremediation of textile dyes.

Potential Use of Probiotic Consortium Isolated from Kefir for Textile Azo Dye Decolorization

  • Ayed, Lamia;Zmantar, Tarek;Bayar, Sihem;Charef, Abdelkrim;Achour, Sami;Mansour, Hedi Ben;Mzoughi, Ridha El
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1629-1635
    • /
    • 2019
  • Azo dyes are recalcitrant pollutants, which are toxic, carcinogenic, mutagenic and teratogenic, that constitute a significant burden to the environment. The decolorization and the mineralization efficiency of Remazol Brillant Orange 3R (RBO 3R) was studied using a probiotic consortium (Lactobacillus acidophilus and Lactobacillus plantarum). Biodegradation of RBO 3R (750 ppm) was investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 11.5 and temperature $25^{\circ}C$. The bio-decolorization process was further confirmed by FTIR and UV-Vis analysis. Under optimal conditions, the bacterial consortium was able to decolorize the dye completely (>99%) within 12 h. The color removal was 99.37% at 750 ppm. Muliplex PCR technique was used to detect the Lactobacillus genes. Using phytotoxicity, cytotoxicity, mutagenicity and biototoxicity endpoints, toxicological studies of RBO 3R before and after biodegradation were examined. A toxicity assay signaled that biodegradation led to detoxification of RBO 3R dye.

Enterobacter cloacae MG82에 의한Triphenylmethane흡수 특성과 탈색효소의 세포내 위치

  • Jeong, Min-Seon;Kwak, Soon-Jun;Kim, Byung-Hong;Chung, Young-Gun;Kang, Sa-Ouk;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 1997
  • Triphenylmethane was decolorized rapidly by enterbacter cloacae MG 82 at initial reaction time. The spheroplast showed higher activity of triphenylmentane decolorization than that of intact cell suspension. The outer part of the bacterial cell envelope and the peptidoglycan are important for the function of transport barrier of triphenylmethane. In intact cell, decolorization activity was higher at 37$\circ $C than at $\circ $C, indicating that triphenylmethane decolorization is due to the enzyme reaction. Culture filtrate showed no decolorization activity, while cell-free extract appeared high activity of 1.45 units, clearly showing that decolorization activity was due to the cell-free extract. Comparing decolorization activities of cell fractions, it was found that decolorization activity was located at the compartment of cytoplasmic membrane. The enzyme activity was also shown to be Mg$^{++}$-dependent. The optimum pH and temperature of enzyme activity were 7.0 and 50$\circ $C, respectively. The thermostability of this enzyme at 35$\circ $C was kept to 58% for 3 hours.

  • PDF

Decolorization of Three Acid Dyes by Enzymes from Fungal Strains

  • PARK , CHUL-HWAN;LEE, YU-RI;KIM, TAK-HYUN;LEE, BYUNG-HWAN;LEE, JIN-WON;KIM, SANG-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1190-1195
    • /
    • 2004
  • In recent years, there has been an intensive research on decolorization of dye and textile wastewater by various fungal strains. In this study, the decolorization ability of three commercial dyes, acid yellow 99, acid blue 350, and acid red 114, were investigated using 10 fungal strains. Among the fungal strains tested, Trametes versicolor KCTC 16781 completely decolorized all dyes in both solid and liquid experiments, and was also able to decolorize the mixture of those three dyes in liquid experiments. The secretion of the ligninolytic enzymes into the extracellular medium during decolorization by T versicolor KCTC 16781 was also studied. No lignin peroxidase activity was detected, and manganese peroxidase and laccase activities were investigated.

Decolorization of Dye Using Immobilized Photocatalyst onto Sponge (스펀지에 고정한 광촉매를 이용한 안료의 탈색)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.415-422
    • /
    • 2005
  • The photocatalytic decolorization of Reactive Red 2B(RR2B) was studied using immobilized photocatalyst/UV System. Two pairs of 20 W UV-B and UV-C lamps were employed as the light source. Immobilization of $TiO_2$ was carried out using sponge (as the photocatalyst body) and silicone sealant(as the binder). The effects of parameters such as the thickness, pore size of sponge photocatalyst and attached material on the reactor bottom were investigated. The results showed that the optimum thickness of sponge photocatalyst was 1 cm. Decolorization of reactor which had the bottom coated $TiO_2$ was higher than that of reactor attached aluminum plate. Decolorization of photocatalyst with large pore size(mean pore size, 3.8 mm) was higher than that of the small(mean pore size, 1.75 mm). Initial decolorization of RR2B could be descrived using the Langmuir-Hinshelwood(L-H) model and gave constant values of $0.55mg/l{\cdot}min(k)\;and\;2.65{\times}10^{-2}l/mg(K)$, respectively.