Browse > Article
http://dx.doi.org/10.7841/ksbbj.2015.30.5.203

Biodecolorization and Biodegradation of Dye by Fungi: A Review  

Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Ryu, Hee Wook (Department of Chemical Engineering, Soongsil University)
Publication Information
KSBB Journal / v.30, no.5, 2015 , pp. 203-222 More about this Journal
Abstract
In recent years, there has been an intensive research on the application of degradative activities of fungi for treatment of various non-degradable materials such as petroleum hydrocarbons, polychlorinated biphenyls, pesticides, polycyclic aromatic hydrocarbons, dyes and so on. Chief of all, the fungal treatment technology is received the spotlight as one of the most promising alternatives to replace present methods for the treatment of dye wastewater. The present paper reviews the recent trend in research on the decolorization and biodegradation of dyes by various fungi, and improvements in bioreactors and bioprocesses involved the fungal treatment of dye wastewater. It also discusses alternatives and perspectives for the innovation of mycoremediation to treat dye wastewaters.
Keywords
Fungi; Dye wastewater; Decolorization; Biodegradation; Bioreactor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Eichlerov, I., L. Homolka, L. Lis, and F. Nerud (2005) Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus. Chemosphere 60: 398-404.   DOI
2 Sathiya Moorthi, P., Munuswamy, D., Sellamuthu, P. S., Kandasamy, M., and K. P. Thangavelu (2007) Biosorption of Textile Dyes and Effluents by Pleurotusflorida and Trametes Hirsutawith evaluation of their laccase activity. Biotechnol. 5: 114-118.
3 Palmieri, G., G. Cennamo, and G. Sannia (2005) Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb. Technol. 36: 17-24.   DOI
4 Keliang, Y., H. Wang, X. Zhang, and H. Yu (2009) Bioprocess of triphenylmethane dyes decolorization by Pleurotus ostreatus BP under solid-state cultivation. J. Microbiol. Biotechnol. 19: 1421-1430.
5 Tychanowicz, G. K., A. Zilly, C. G. M. de Souza, and R. M. Peralta (2004) Decolourisation of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Process Biochem. 39: 855-859.   DOI
6 Chakraborty, S., B. Basak, S. Dutta, B. Bhunia, and A. Dey (2013) Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresour. Technol. 147: 662-666.   DOI
7 Eichlerov, I., L. Homolka, and F. Nerud (2007) Decolorization of high concentrations of synthetic dyes by the white rot fungus Bjerkandera adusta strain CCBAS 232. Dyes and Pigment. 75: 38-44.   DOI
8 Kapdan, I. K., F. Kargia, G. McMullan, and R. Marchant (2000) Effect of environmental conditions on biological decolorization of textile dyestuff by C. versicolor. Enzyme Microb. Technol. 26: 381-387.   DOI
9 Yan, J., J. Niu, D. Chen, Y. Chen, and C. Irbis (2014) Screening of Trametes strains for efficient decolorization of malachite green at high temperatures and ionic concentrations. Int. Biodeterior. Biodegrad. 87: 109-115.   DOI
10 Si, J. and B.-K. Cui (2013) A new fungal peroxidase with alkaline-tolerant, chloride-enhancing activity and dye decolorization capacity. J. Mol. Catal. B-Enzym. 89: 6-14.   DOI
11 Chen, W., L. Zheng, R. Jia, and N. Wang (2015) Cloning and expression of a new manganese peroxidase from Irpex lacteus F17 and its application in decolorization of reactive black 5. Process Biochem. doi:10.1016/j.procbio.2015.07.009
12 Mu, Y., K. Rabaey, R. A. Rozendal, Z. Yuan, and J. Keller (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ. Sci. Technol. 43: 5137-5143.   DOI
13 Sun, J., Y.-y. Hu, Z. Bi, and Y.-q. Cao (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour. Technol. 100: 3185-3192.   DOI
14 Li, Z., X. Zhang, J. Lin, S. Han, and L. Lei (2010) Azo dye treatment with simultaneous electricity production in an anaerobicaerobic sequential reactor and microbial fuel cell coupled system. Bioresour. Technol. 101: 4440-4445.   DOI
15 Kalathil, S., J. Lee, and M. H. Cho (2011) Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnol. 29: 32-37.   DOI
16 Park, C., M. Lee, B. Lee, S.-W. Kim, H. A. Chase, J. Lee, and S. Kim (2007) Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem. Eng. J. 36: 59-65.   DOI
17 Levin, L., L. Papinutti, and F. Forchiassin (2004) Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour. Technol. 94: 169-176.   DOI
18 Vasdev, K., R. Kuhad, and R. Saxena (1995) Decolorization of triphenylmethane dyes by the bird's nest fungus Cyathus bulleri. Curr. Microbiol. 30: 269-272.   DOI
19 Yesilada, O., S. Cing, and D. Asma (2002) Decolourisation of the textile dye Astrazon Red FBL by Funalia trogii pellets. Bioresour. Technol. 81: 155-157.   DOI
20 Zhuo, R., L. Ma, F. Fan, Y. Gong, X. Wan, M. Jiang, X. Zhang, and Y. Yang (2011) Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. J. Hazard. Mater. 192: 855-873.   DOI
21 Ma, L., R. Zhuo, H. Liu, D. Yu, M. Jiang, X. Zhang, and Y. Yang (2014) Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem. Eng. J. 82: 1-9.   DOI
22 Maximo, C., M. T. P. Amorim, and M. Costa-Ferreira (2003) Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme Microb. Technol. 32: 145-151.   DOI
23 Jasinska, A., K. Paraszkiewicz, A. Sip, and J. Dlugonski (2015) Malachite green decolorization by the filamentous fungus Myrothecium roridum - Mechanistic study and process optimization. Bioresour. Technol. 194: 43-48.   DOI
24 Zhang, S. J., M. Yang, Q. X. Yang, Y. Zhang, B. P. Xin, and F. Pan (2003) Biosorption of reactive dyes by the mycelium pellets of a new isolate of Penicillium oxalicum. Biotechnol. Lett. 25: 1479-1482.   DOI
25 Singh, H. (2006) Mycoremediation: Fungal Bioremediation. pp. 420-472. John Wiley & Sons. Inc., Hoboken, New Jersey, Canada.
26 Fu, Y. and T. Viraraghavan (2001a) Fungal decolorization of dye wastewaters: a review. Bioresour. Technol. 79: 251-262.   DOI
27 Jin, X.-C., G.-Q. Liu, Z.-H. Xu, and W.-Y. Tao (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl. Microbiol. Biotechnol. 74: 239-243.   DOI
28 Zhang, X., Y. Liu, K. Yan, and H. Wu (2007) Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1. J. Biosci. Bioeng. 104: 104-110.   DOI
29 Yang, Q., M. Yang, K. Pritsch, A. Yediler, A. Hagn, M. Schloter, and A. Kettrup (2003) Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol. Lett. 25: 709-713.   DOI
30 Jasiska, A., S. Ralska, P. Bernat, K. Paraszkiewicz, and J. Dlugoski (2012) Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. Int. Biodeterior. Biodegrad. 73: 33-40.   DOI
31 Zheng, Z., R. E. Levin, J. L. Pinkham, and K. Shetty (1999) Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochem. 34: 31-37.   DOI
32 Kirby, N., R. Marchant, and G. McMullan (2000) Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol. Lett. 188: 93-96.   DOI
33 Das, S. K., J. Bhowal, A. R. Das, and A. K. Guha (2006) Adsorption Behavior of Rhodamine B on Rhizopus oryzae Biomass. Langmuir 22: 7265-7272.   DOI
34 Renganathan, S., W. R. Thilagaraj, L. R. Miranda, P. Gautam, and M. Velan (2006) Accumulation of acid orange 7, acid red 18 and reactive black 5 by growing Schizophyllum commune. Bioresour. Technol. 97: 2189-2193.   DOI
35 Eaton, D., Chang, H. M., and Kirk, T. K. (1980) Fungal decolorization of Kraft bleach plant effluent. Tappi J. 63: 103-109.
36 Banat, I. M., P. Nigam, D. Singh, and R. Marchant (1996) Microbial decolorization of textile-dyecontaining effluents: A review. Bioresour. Technol. 58: 217-227.   DOI
37 Rai, H. S., M. S. Bhattacharyya, J. Singh, T. K. Bansal, P. Vats, and U. C. Banerjee (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: A review of rmerging techniques with reference to biological treatment. Crit. Rev. Environ. Sci. Technol. 35: 219-238.   DOI
38 Livernoche, D., L. Jurasek, M. Desrochers, and I. A. Veliky (1981) Decolorization of a kraft mill effluent with fungal mycelium immobilized in calcium alginate gel. Biotechnol. Lett. 3: 701-706.   DOI
39 Yesilada, O. (1995) Decolourization of crystal violet by fungi. World J. Microbiol. Biotechnol. 11: 601-602.   DOI
40 Wu, F., H. Ozaki, Y. Terashima, T. Imada, and Y. Ohkouchi (1996) Activities of ligninolytic enzymes of the white rot fungus, Phanerochaete chrysosporium and its recalcitrant substance degradability. Water Sci. Technol. 34: 69-78.   DOI
41 Young, L. and J. Yu (1997) Ligninase-catalysed decolorization of synthetic dyes. Water Res. 31: 1187-1193.   DOI
42 Tatarko, M. and J. A. Bumpus (1998) Biodegradation of congo red by Phanerochaete chrysosporium. Water Res. 32: 1713-1717.   DOI
43 Conneely, A., W. F. Smyth, and G. McMullan (1999) Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium. FEMS Microbiol. Lett. 179: 333-337.   DOI
44 Hatakka, A. (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol. Rev. 13: 125-135.   DOI
45 Asgher, M., Q. Yasmeen, and H. M. N. Iqbal (2013) Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J. Biol. Sci. 20: 347-352.   DOI
46 Selvam, K., K. Swaminathan, and K.-S. Chae (2003) Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour. Technol. 88: 115-119.   DOI
47 Wesenberg, D., I. Kyriakides, and S. N. Agathos (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187.   DOI
48 Rodriguez Couto, S., and M. A. Sanromn (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22: 211-219.   DOI
49 Winquist, E., U. Moilanen, A. Mettl, M. Leisola, and A. Hatakka (2008) Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem. Eng. J. 42: 128-132.   DOI
50 Hakala, T. K., T. Lundell, S. Galkin, P. Maijala, N. Kalkkinen, and A. Hatakka (2005) Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb. Technol. 36: 461-468.   DOI
51 Levin, L., C. Herrmann, and V. L. Papinutti (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem. Eng. J. 39: 207-214.   DOI
52 Zeng, G., M. Cheng, D. Huang, C. Lai, P. Xu, Z. Wei, N. Li, C. Zhang, X. He, and Y. He (2015) Study of the degradation of methylene blue by semi-solid-state fermentation of agricultural residues with Phanerochaete chrysosporium and reutilization of fermented residues. Waste Manage. 38: 424-430.   DOI
53 Chagas, E. P. and L. R. Durrant (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb. Technol. 29: 473-477.   DOI
54 Yesilada, O., D. Asma, and S. Cing (2003) Decolorization of textile dyes by fungal pellets. Process Biochem. 38: 933-938.   DOI
55 Pazarlioglu, N. K., R. O. Urek, and F. Ergun (2005) Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium. Process Biochem. 40: 1923-1929.   DOI   ScienceOn
56 Ollikka, P., K. Alhonmki, V. M. Leppnen, T. Glumoff, T. Raijola, and I. Suominen (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes bylignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59: 4010-4016.
57 Levin, L., A. Jordan, F. Forchiassin, and A. Viale (2001) Degradation of anthraquinone blue by Trametes trogii. Rev. Argent. Microbiol. 33: 223-228.
58 Heinfling, A., M. Bergbauer, and U. Szewzyk (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 48: 261-266.   DOI
59 Toh, Y.-C., J. J. L. Yen, J. P. Obbard, and Y.-P. Ting (2003) Decolourisation of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme Microb. Technol. 33: 569-575.   DOI
60 Kachlishvili, E., M. Penninckx, N. Tsiklauri, and V. Elisashvili (2006) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J. Microbiol. Biotechnol. 22: 391-397.   DOI
61 Pinto, P. A., A. A. Dias, I. Fraga, G. Marques, M. A. M. Rodrigues, J. Colao, A. Sampaio, and R. M. F. Bezerra (2012) Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour. Technol. 111: 261-267.   DOI
62 Fujian, X., C. Hongzhang, and L. Zuohu (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol. 80: 149-151.   DOI
63 Liang, Y.-S., X.-Z. Yuan, G.-M. Zeng, C.-L. Hu, H. Zhong, D.-L. Huang, L. Tang, and J.-J. Zhao (2010) Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation 21: 615-624.   DOI
64 Li, H., R. Zhang, L. Tang, J. Zhang, and Z. Mao (2015) Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chinese J. Chem. Eng. 23: 227-233.   DOI
65 Andleeb, S., N. Atiq, G. Robson, and S. Ahmed (2012) An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ. Sci. Pollut. Res. 19: 1728-1737.   DOI
66 Nilsson, I., A. Mller, B. Mattiasson, M. S. T. Rubindamayugi, and U. Welander (2006) Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb. Technol. 38: 94-100.   DOI
67 Maximo, C. and M. Costa-Ferreira (2004) Decolourisation of reactive textile dyes by Irpex lacteus and lignin modifying enzymes. Process Biochem. 39: 1475-1479.   DOI
68 Bayramolu, G., and M. Yakup Arica (2007) Biosorption of benzidine based textile dyes "Direct Blue 1 and Direct Red 128" using native and heat-treated biomass of Trametes versicolor. J. Hazard. Mater. 143: 135-143.   DOI
69 Yang, X. Q., X. X. Zhao, C. Y. Liu, Y. Zheng, and S. J. Qian (2009) Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem. 44: 1185-1189.   DOI
70 Wong, Y. and J. Yu (1999) Laccase-catalyzed decolorization of synthetic dyes. Water Res. 33: 3512-3520.   DOI
71 Novotn, C., K. Svobodov, A. Kasinath, and P. Erbanov (2004) Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int. Biodeterior. Biodegrad. 54: 215-223.   DOI
72 Svobodova, K., M. Senholdt, C. Novotny, and A. Rehorek (2007) Mechanism of reactive orange 16 degradation with the white rot fungus Irpex lacteus. Process Biochem. 42: 1279-1284.   DOI
73 Kalpana, D., J. H. Shim, B.-T. Oh, K. Senthil, and Y. S. Lee (2011) Bioremediation of the heavy metal complex dye Isolan Dark Blue 2SGL-01 by white rot fungus Irpex lacteus. J. Hazard. Mater. 198: 198-205.   DOI
74 Kalpana, D., N. Velmurugan, J. H. Shim, B.-T. Oh, K. Senthil, and Y. S. Lee (2012) Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus. J. Environ. Manage. 111: 142-149.   DOI
75 Sumathi, S., and V. Phatak (1999) Fungal treatment of bagasse based pulp and paper mill wastes. Environ. Technol. 20: 93-98.   DOI
76 Dominguez, A., I. Rivela, S. R. g. Couto, and M. A. Sanromn (2001) Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochem. 37: 549-554.   DOI
77 Iandolo, D., A. Amore, L. Birolo, G. Leo, G. Olivieri, and V. Faraco (2011) Fungal solid state fermentation on agro-industrial wastes for acid wastewater decolorization in a continuous flow packed-bed bioreactor. Bioresour. Technol. 102: 7603-7607.   DOI
78 Rodriguez Couto, S. R., E. Rosales, and M. A. Sanromn (2006) Decolourization of synthetic dyes by Trametes hirsuta in expanded-bed reactors. Chemosphere 62: 1558-1563.   DOI
79 Hai, F. I., K. Yamamoto, F. Nakajima, and K. Fukushi (2008) Removal of structurally different dyes in submerged membrane fungi $reactor^{{\circ}TM}$Biosorption/PAC-adsorption, membrane retention and biodegradation. J. Membr. Sci. 325: 395-403.   DOI
80 Kapdan, K. I., and F. Kargi (2002) Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor. Enzyme Microb. Technol. 30: 195-199.   DOI   ScienceOn
81 Ge, Y., L. Yan, and K. Qinge (2004) Effect of environment factors on dye decolorization by P. sordida ATCC90872 in a aerated reactor. Process Biochem. 39: 1401-1405.   DOI
82 Sima, J., J. Pocedi, T. Roubkov, and P. Hasal (2012) Rotating drum biological contactor and its application for textile dyes decolorization. Procedia Eng. 42: 1579-1586.   DOI
83 Malachova, K., Z. Rybkova, H. Sezimova, J. Cerven, and C. Novotny (2013) Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater. Water Res. 47: 7143-7148.   DOI
84 Fu, Y., Viraraghavan, T. (2000) Removal of a dye from an aqueous solution by fungus Aspergillus niger. Water Qual. Res. J. Canada 35: 95-111.
85 Sumathi, S., and B. S. Manju (2000) Uptake of reactive textile dyes by Aspergillus foetidus. Enzyme Microb. Technol. 27: 347-355.   DOI
86 Sharma, P., L. Singh, and N. Dilbaghi (2009) Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. J. Hazard. Mater. 161: 1081-1086.   DOI   ScienceOn
87 Wunch, K. G., T. Feibelman, and J. W. Bennett (1997) Screening for fungi capable of removing benzo[a]pyrene in culture. Appl. Microbiol. Biotechnol. 47: 620-624.   DOI
88 Fu, Y. and T. Viraraghavan (2001b) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv. Environ. Res. 1: 36-40.
89 Abd El-Rahim, W. M., and H. Moawad (2003) Enhancing bioremoval of textile dyes by eight fungal strains from media supplemented with gelatine wastes and sucrose. J. Basic Microbiol. 43: 367-375.   DOI
90 Ryu, B.-H. Y. D. W. (1992) Decolorization of azo dyes by Aspergillus sojae B-10. J. Microbiol. Bioechnol. 2: 215-219.
91 Abd El-Rahim, W. M., H. Moawad, and M. Khalafallah (2003) Microflora involved in textile dye waste removal. J. Basic Microbiol. 43: 167-174.   DOI
92 Ramya, M., B. Anusha, S. Kalavathy, and S., Devilaksmi (2007) Biodecolorization and biodegradation of Reactive Blue by Aspergillus sp. African J. Biotechnol. 6: 1441-1445.
93 Kumar, C. G., P. Mongolla, J. Joseph, and V. U. M. Sarma (2012) Decolorization and biodegradation of triphenylmethane dye, brilliant green, by Aspergillus sp. isolated from Ladakh, India. Process Biochem. 47: 1388-1394.   DOI
94 Leidig, E., U. Prsse, K. D. Vorlop, and J. Winter (1999) Biotransformation of Poly R-478 by continuous cultures of PVAL-encapsulated Trametes versicolor under non-sterile conditions. Bioprocess Eng. 21: 5-12.
95 Mielgo, I., M. T. Moreira, G. Feijoo, and J. M. Lema (2002) Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium. Water Res. 36: 1896-1901.   DOI
96 Kasinath, A., C. Novotny, K. Svobodova, K. C. Patel, and V. Sasek (2003) Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb. Technol. 32: 167-173.   DOI
97 Rodriguez Couto, S., M. A. Sanromn, D. Hofer, and G. M. Gubitz (2004) Stainless steel sponge: a novel carrier for the immobilisation of the white-rot fungus Trametes hirsuta for decolourization of textile dyes. Bioresour. Technol. 95: 67-72.   DOI
98 Karimi, A., F. Vahabzadeh, and B. Bonakdarpour (2006) Use of Phanerochaete chrysosporium immobilized on kissiris for synthetic dye decolourization: Involvement of manganese peroxidase. World J. Microbiol. Biotechnol. 22: 1251-1257.   DOI
99 Cheng, Z., W. Xiang-hua, and N. Ping (2013) Continuous Acid Blue 45 decolorization by using a novel open fungal reactor system with ozone as the bactericide. Biochem. Eng. J. 79: 246-252.   DOI
100 Kim, T.-H., Y. Lee, J. Yang, B. Lee, C. Park, and S. Kim (2004) Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination 168: 287-293.   DOI
101 Hai, F. I., K. Yamamoto, and K. Fukushi (2006) Development of a submerged membrane fungi reactor for textile wastewater treatment. Desalination 192: 315-322.   DOI
102 Pan, K., N. Zhao, Q. Yin, T. Zhang, X. Xu, W. Fang, Y. Hong, Z. Fang, and Y. Xiao (2014) Induction of a laccase Lcc9 from Coprinopsis cinerea by fungal coculture and its application on indigo dye decolorization. Bioresour. Technol. 162: 45-52.   DOI
103 Sathian, S., G. Radha, V. Shanmugapriya, M. Rajasimman, and C. Karthikeyan (2013) Optimization and kinetic studies on treatment of textile dye wastewater using Pleurotus floridanus. Appl. Water Sci. 3: 41-48.   DOI
104 Sathian, S., M. Rajasimman, G. Radha, V. Shanmugapriya, and C. Karthikeyan (2014) Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies. Alexandria Eng. J. 53: 417-426.   DOI
105 Kadam, A. A., A. A. Telke, S. S. Jagtap, and S. P. Govindwar (2011) Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation. J. Hazard. Mater. 189: 486-494.   DOI
106 Kuhar, F., V. Castiglia, and L. Levin (2015) Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Int. Biodeterior. Biodegrad. 104: 238-243.   DOI
107 Qu, Y., S. Shi, F. Ma, and B. Yan (2010) Decolorization of Reactive Dark Blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresour. Technol. 101: 8016-8023.   DOI
108 Gou, M., Y. Qu, J. Zhou, F. Ma, and L. Tan (2009) Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. J. Hazard. Mater. 170: 314-319.   DOI
109 Si, J., F. Peng, and B. Cui (2013) Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour. Technol. 128: 49-57.   DOI