• Title/Summary/Keyword: Duty Ratio Change Method

Search Result 16, Processing Time 0.024 seconds

A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine (대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan;Song, Hoyoung;Kim, Giho;Ha, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.

A Study on Falling Pressure Surge of ABS Using High Frequency PWM Control (고주파수 PWM제어를 이용한 ABS의 맥동 저감에 관한 연구)

  • Lee, Yong-Joo;Kim, Byeong-Woo;Park, Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • The solenoid valve in ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the valve is switched from open state to closed state, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder are made. In this study, we identify Pressure surge phenomenon in the braking process of a ABS, and investigate the way to reduce the phenomenon. For the purpose of theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. To reduce the surge, high frequency control of 20kHz was attempted. The result showed that the surge pressure of 50% was reduced compared to one observed in the low frequency control. Duty variation of high frequency can control current of solenoid valve and prevent sudden change of displacement.

A Buck-Boost Type Charger with a Switched Capacitor Circuit

  • Wu, Jinn-Chang;Jou, Hurng-Liahng;Tsai, Jie-Hao
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, a buck-boost type battery charger is developed for charging battery set with a lower voltage. This battery charger is configured by a rectifier circuit, an integrated boost/buck power converter and a switched capacitors circuit. A boost power converter and a buck power converter sharing a common power electronic switch are integrated to form the integrated boost/buck power converter. By controlling the common power electronic switch, the battery charger performs a hybrid constant-current/constant-voltage charging method and gets a high input power factor. Accordingly, both the power circuit and the control circuit of the developed battery charger are simplified. The switched capacitors circuit is applied to be the output of the boost converter and the input of the buck converter. The switched capacitors circuit can change its voltage according to the utility voltage so as to reduce the step-up voltage gain of the boost converter when the utility voltage is small. Hence, the power efficiency of a buck-boost type battery charger can be improved. Moreover, the step-down voltage gain of the buck power converter is reduced to increase the controllable range of the duty ratio for the common power electronic switch. A prototype is developed and tested to verify the performance of the proposed battery charger.

A Research on transmission energy and data using induced electromotive force of coil (코일의 유도기전력을 이용한 에너지 및 데이터 전송방법에 관한 연구)

  • Jung, Hee-Chur;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Myung-Hyun;Koo, Ja-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.607-615
    • /
    • 2016
  • This study concerns the transmission of energy and data using induced electromotive force. Due to the requirements of weapon systems, most arms are kept in an armory for a very long time before being used. During this time, the reserve battery, which serves mostly as a power supply for the electronic fuze, can be degraded, thus causing problems when it is actually needed. We attempt to solve the various problems associated with the old fuze system caused by long-term storage by using the 'induction power' transmitted from another device just before its operation, instead of using 'built-in power'. We tried to find the best carrier frequency to communicate with the system by induced electromotive force. Also, we changed the communication method for transmitting the 'induction power' from 'FM/AM modulation' to 'Duty ratio modulation', which can transmit a large amount of data in a short time. Through experiments, it was demonstrated that the induction coil can replace the reserve fuze's battery without any problem, thus confirming the possibility of using an induction coil as the power supply source of the electronic fuze.

Design Procedure of the Inverter for LCD Backlight using Piezoelectric Transformer (압전 변압기를 이용한 LCD 백라이트 구동용 인버터 설계 절차)

  • Kweon Gie-Hyoun;Cho Sung-Koo;Lim Young-Cheol;Yang Seung-Hak
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.577-583
    • /
    • 2004
  • Optimal parameters were selected to design an inverter circuit that drives a cold cathode fluorescent lamp for LCD backlight using a piezoelectric transformer and it was verified by an experiment. In this paper, the applied inverter topologies are a push-pull type and a half-bridge type, and the dimming control methods of these drive system were used a analog control method and a burst control method each other. When change a control voltage from 2.5V to 4.5V in the analog control method, the brightness 0-100% was seen in current 1-6 mA. And, the input/output efficiency were obtained 90.3%. Also, the control performance of 1-6 mA was seen in duty ratio 5-50% in the burst control method, and the input/output efficiency of the designed inverter got 82.1%.

The optimization study of core power control based on meta-heuristic algorithm for China initiative accelerator driven subcritical system

  • Jin-Yang Li;Jun-Liang Du;Long Gu;You-Peng Zhang;Cong Lin;Yong-Quan Wang;Xing-Chen Zhou;Huan Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.452-459
    • /
    • 2023
  • The core power control is an important issue for the study of dynamic characteristics in China initiative accelerator driven subcritical system (CiADS), which has direct impact on the control strategy and safety analysis process. The CiADS is an experimental facility that is only controlled by the proton beam intensity without considering the control rods in the current engineering design stage. In order to get the optimized operation scheme with the stable and reliable features, the variation of beam intensity using the continuous and periodic control approaches has been adopted, and the change of collimator and the adjusting of duty ratio have been proposed in the power control process. Considering the neutronics and the thermal-hydraulics characteristics in CiADS, the physical model for the core power control has been established by means of the point reactor kinetics method and the lumped parameter method. Moreover, the multi-inputs single-output (MISO) logical structure for the power control process has been constructed using proportional integral derivative (PID) controller, and the meta-heuristic algorithm has been employed to obtain the global optimized parameters for the stable running mode without producing large perturbations. Finally, the verification and validation of the control method have been tested based on the reference scenarios in considering the disturbances of spallation neutron source and inlet temperature respectively, where all the numerical results reveal that the optimization method has satisfactory performance in the CiADS core power control scenarios.