• Title/Summary/Keyword: Dust Explosion

Search Result 96, Processing Time 0.021 seconds

An Evaluation of Minimum Explosible Concentration and Explosion Severity of Coal Dust in a Thermal Power Plant (화력발전소용 석탄분진의 최소폭발농도와 폭발강도 평가)

  • Yeosong Yoon;Keun-won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • The use of low-grade coal is continuously increasing with the development of combustion technology and cost reduction for coal used in thermal power plants . During combustion, the latent heat of evaporation due to moisture is large, and there is a risk of spontaneous combustion and dust explosion during the process of storing and pulverizing coal. This study compared and evaluated the minimum explosive concentration and explosive strength of four types of coal dust-fine, coal dust-coarse, wood pallet+organic dust, and wood chip with coal powder collected from domestic power plant D. The minimum explosive concentration of coal dust was measured according to JIS Z 8818:2002, and the explosion strength was tested according to ASTM E1226 using a Siwek 20 L Chamber Apparatus. As a result of the minimum explosive concentration test, it was found that coal dust-fine has a risk of dust explosion, and since an explosion occurs at a dust concentration of 130 g/m3 of wood chips, it was found that there is a risk of explosion at the lowest dust concentration. According to the dust explosion class standard, Kst is less than 200 bar m/s, and all samples fall under the explosion class St 1, and the dust has a low risk of explosion.

A Study on the Explosion Riskiness with Flying of Activated Carbon (활성탄의 부유중 폭발 위험성에 관한 연구)

  • 김정환;현성호;이창우;함영민
    • Fire Science and Engineering
    • /
    • v.12 no.3
    • /
    • pp.3-9
    • /
    • 1998
  • We investigated the weight loss according to temperature using TGA in order to find the thermal hazard of brand-new activated-carbon and disused activated-carbon dusts, and the properties of dust explosion in variation of the specific surface area of their dust with the same particle size. Using hartman's dust explosion apparatus which estimate dust explosion by electric ignition after making dust disperse by compressed air, dust explosion experiments have been conducted by varying concentration and size of activated carbon dust. The explosion pressure of both activated carbon increased as the specipic surface area increased. The results indicated that brand-new activated-carbon of which specific surface area was larger three to four times than that of disused activated-carbon was much easier of dust explosion.

  • PDF

Hazard Assessment of Explosion in Suspended Dust of Wood (목재 부유분진의 폭발 위험성 평가)

  • Lee, Keun Won;Lee, Su-Hee;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.81-86
    • /
    • 2013
  • Accidents of dust explosion has been occurred in various industries as a plastics, pharmaceuticals, timber, grain storage, solid fuels and chemicals. In this study, the silo dust, hammer mill dust and Nyusong dust in the manufacturing process of the particle board to utilize west wood, which were selected for this experiment and were evaluated the characteristics of dust explosion. The explosion characteristics such as a maximum explosion pressure, explosion index, lower explosive limit, and minimum ignition energy in suspended dust of the wood by Siwek 20 L apparatus were measured and evaluated for the experiment. The results of this study can be used the process safety measures to prevent accidents of fire and explosion in the suspended dust of wood.

A study of flour dust explosion (사료분진의 폭발특성에 관한 연구)

  • Lee, Hong-Ju;Woo, In-Sung;Hong, Hyun-Kyoung;Sa, Min-Hyung;Kim, Yun-Seon;Hwhag, Myung-Whan;Hwang, Seong-Min;Park, Hee-Chul;Lee, Ju-Yup
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.109-116
    • /
    • 2011
  • This study examined into property of flour dust explosion to get the basic data for safety of industry by protecting accident of dust explosion. The experiment was conducted to know the effect of distance between explodes in the experiment device, effect of flour dust concentration, effect of humidity, effect of explosion pressure to the dust concentration and effect of inactive substance additive. The study indicated that explosion was happened effectively at the optimum distance 100mm or less in inter-polar distance, and minimum ignition energy was measured at 6mm. The data of feed concentration to the probability of explosion showed that the smaller the particle diameter was, the larger probability of explosion was, and the higher the dust concentration was, the more increased the pressure of explosion was, but more than upper limit of dust concentration, then the explosion of pressure decreased. For the effect of humidity, the more it contained water, the more decreased the ignition energy of dust was, so increased minimum explosive concentration, and effective water content was minimum 10% or more. Inactive substance additive was effective in adding more than 15% CaCO3 and CaO as substance inhibiting dust explosion, in which CaCO3 was more effective than CaO. the analysis of the flame of dust explosion was performed by high-speed video camera, it showed the size of flame bacame smaller in order that sub feed, main feed, wheat powder. As a result, sub feed was expected to be less dangerous than others.

Dust Explosion Characteristics of Multi-Walled Carbon Nano Tube (다중벽 탄소나노튜브의 분진폭발 특성)

  • Han, In Soo;Lee, Keun Won;Choi, Yi Rac
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • Dust explosion hazards are always present when combustible dusts are manufactured or handled in the process. However, industries is experiencing difficulty in establishing chemical accident prevention measures because of insufficiency of information on dust explosion characteristics of combustible dust handled in industry. In this study, we investigated experimentally dust explosion characteristics of two kinds of multi-walled carbon nano tubes (MWCNT) different in particle size distribution and examined classification of dust explosion hazardous area for MWCNT manufacturing or handling process by applying the NFPA 499 code. As a result, $P_{max}$, $K_{st}$, LEL, MIE and MIT of MWCNT 1 having $124.2{\mu}m$ median diameter are obtained 6.3 bar, $56bar{\cdot}m/s$, $125g/m^3$, over 1000 mJ, and over $650^{\circ}C$. $P_{max}$, $K_{st}$, LEL, MIE and MIT of MWCNT 2 having $293.5{\mu}m$ median diameter are 6.2 bar, $42bar{\cdot}m/s$, $100g/m^3$, over 1000 mJ, and over $650^{\circ}C$, respectively. MWCNT 1, 2 are not categorized as combustible dust listed in the NFPA 499 Code for classification of dust explosion hazardous area because explosion severity and ignition sensitivity of MWCNT 1, 2 are below 0.35 and 0.01, respectively.

A study on the explosion properties and Autoignition Temperature of a food additive Dusts (식품분진의 폭발 특성과 발화온도에 관한 연구)

  • 안형환
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.301-310
    • /
    • 2001
  • A study for the dangerous properties measurment of dust explosion was attended by the various dust concentration on Anthraquinone, Sodiumbenzoic acid, Corn starch, soy sauce powder, and cheese powder. As the result, maximum explosion pressure, the maximum rate of pressure rise, autoigntion temperature, and the water content of dust on lower limit explosion concentration was obtained as follows 1. The lower limit explosion concentration on soy sauce powder with the humidity of 65 to 90% increased by increasing the con tent of moisture, and the effect of dry air and moisture air decreased better in make of dry air. 2. The effect of a various dust concentration on autoigntion temperatures is investigated, If the vessel of dust explosion is small size and the easiness of autoignition was controled by air within the vessel, because it was better decreased air with increasing of dust concentration 3. The maximum explosion pressures of Anthraguinone, sodiumbenzoic acid, com starch, soy sauce powder, and cheese powder were 1.0g/$\ell$, 1.0g/$\ell$, 1.5g/$\ell$, 1.5g/$\ell$, and 1.5g/$\ell$, respectively, and the maximum rate of pressure rise were 0.5g/$\ell$, 0.5g/$\ell$, 1.0g/$\ell$, 1.0g/$\ell$, and 1.0g/$\ell$, respectively.

  • PDF

Hazards of Explosion and Ignition of Foods Dust (식료품 분진의 발화 및 폭발 위험성)

  • Han, Ou-Sup
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.629-637
    • /
    • 2017
  • Severe dust explosions occurred frequently in food processing industries and explosion damage increase by flame propagation in pipes or plants. However there are few fire explosion data available due to various powder characteristics. We investigated the characteristics of ignition and explosion on sugar, cornstarch and flour dust with high frequency accidents and high social demand. The measurements showed the median diameter of 27.56, 14.76, $138.5{\mu}m$ and ignition temperature has been investigated using by thermo-gravimetric analysis (TGA) and differential scanning calorimeter (DSC). The maximum explosion pressure ($P_m$) and dust explosion index ($K_{st}$) of sugar, cornstarch and flour are 7.6, 7.6, 6.1 bar and 153, 133, 61 [$m{\cdot}bar/s$], respectively. The flame propagation time in duct was calculated in order to evaluate the damage increase due to flame propagation during dust explosion. The explosion hazard increase due to flame propagation was higher in the order of sugar, flour and cornstarch dust.

Study on Dust Explosion Characteristics of Acetylene Black (Acetylene Black의 분진폭발 특성 연구)

  • Jae Jun Choi;Dong Myeong Ha
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.38-43
    • /
    • 2024
  • Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.

Study on Explosion Behavior of Air-born Rice Bran Dusts according to Ignition Energy (점화에너지 변화에 따른 쌀겨분진의 폭발 거동에 관한 연구)

  • 김정환;김현우;현성호;백동현
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-32
    • /
    • 1999
  • We had investigated combustion pro야$\pi$ies of rice bran dusts. Decomposition of rice bran d dusts with temperature were investigated using DSC and the weight loss according to t temperature using TGA in order to find the thermal hazard of rice bran dusts, and the p properties of dust explosion in variation of their dust with the same particle size. Using H Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after m making dust disperse by compressed air, dust explosion experiments have been conducted by v varying concen$\sigma$ation and size of rice br뻐 dust. According to the results for thermodynamic stability of rice bran dust, there are little change of initiation temperature of heat generation 때d heating value for used particle size. But i initiation temperature of heat generation decreased with high heating rate whereas d decomposition heat increased with particle size. Also, the explosion pressure was increased as t the ignition energy increased and average maximum explosion pressure was 13.5 kgv'cnt for 5 BJ/60 mesh and 1.5 뼈Ie미 dust concentration.

  • PDF

A Study on the Comparison of Explosive Lower Limit Concentration & Thermal Specific of Wheat Powder Dust & Salicylic Acid Dust (밀가루분진 및 살리실산분진의 폭발하한농도 및 열적특성 비교에 관한 연구)

  • Ko, Jae-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • We have examined In order to compare each other from explosion and combustion characteristics about the dusts which collects from manufacturing process of wheat flour and cosmetics manufacturing process of functional Keratin removal soap at the small and medium enterprise style. We measured explosive pressure and explosive lower limit which follows in change of concentration change at the time of talc addition uses Hartman dust explosion apparatus, also measured weight loss and endothermic quantity uses DSC and TGA. The explosion test results show that increased explosive lower limit concentration and explosive pressure decreased by the increased ratio of the talc dust. And the DSC results show that heat flux and temperature decreased by the increased ratio of the talc dust. Also increased in raising temperature causes initial smoldering temperature to move towards low temperature section and the endothermic quantity increased on a large scale. Together the TGA results show that weight loss decreased by the increased ratio of the talc dust. From this research we have assured the successive dust explosion mechanism study will play a key role as a significant safety securing guideline against the dust explosion.