DOI QR코드

DOI QR Code

Dust Explosion Characteristics of Multi-Walled Carbon Nano Tube

다중벽 탄소나노튜브의 분진폭발 특성

  • Han, In Soo (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Keun Won (Occupational Safety & Health Research Institute, KOSHA) ;
  • Choi, Yi Rac (Occupational Safety & Health Research Institute, KOSHA)
  • 한인수 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이근원 (한국산업안전보건공단 산업안전보건연구원) ;
  • 최이락 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2016.05.30
  • Accepted : 2016.08.17
  • Published : 2017.02.01

Abstract

Dust explosion hazards are always present when combustible dusts are manufactured or handled in the process. However, industries is experiencing difficulty in establishing chemical accident prevention measures because of insufficiency of information on dust explosion characteristics of combustible dust handled in industry. In this study, we investigated experimentally dust explosion characteristics of two kinds of multi-walled carbon nano tubes (MWCNT) different in particle size distribution and examined classification of dust explosion hazardous area for MWCNT manufacturing or handling process by applying the NFPA 499 code. As a result, $P_{max}$, $K_{st}$, LEL, MIE and MIT of MWCNT 1 having $124.2{\mu}m$ median diameter are obtained 6.3 bar, $56bar{\cdot}m/s$, $125g/m^3$, over 1000 mJ, and over $650^{\circ}C$. $P_{max}$, $K_{st}$, LEL, MIE and MIT of MWCNT 2 having $293.5{\mu}m$ median diameter are 6.2 bar, $42bar{\cdot}m/s$, $100g/m^3$, over 1000 mJ, and over $650^{\circ}C$, respectively. MWCNT 1, 2 are not categorized as combustible dust listed in the NFPA 499 Code for classification of dust explosion hazardous area because explosion severity and ignition sensitivity of MWCNT 1, 2 are below 0.35 and 0.01, respectively.

가연성 분진이 제조 취급되는 공정에서의 분진폭발 위험성은 항상 존재한다. 그러나 산업현장에서 취급되는 분진에 대한 분진폭발 특성 정보는 아주 미흡한 실정으로 사업장에서는 화학사고 예방대책 수립에 어려움을 겪고 있다. 본 연구에서는 입도분포가 다른 두 종류의 다중벽 탄소나노튜브(MWCNT)에 대한 분진폭발 특성을 실험적으로 조사하였으며, NFPA 499 Code를 적용하여 MWCNT 제조 취급 공정의 분진폭발 위험장소 구분을 검토하였다. 그 결과 평균입도가 $124.2{\mu}m$인 MWCNT 1의 $P_{max}$, $K_{st}$, LEL, MIE, 및 MIT는 각각 6.3 bar, $56bar{\cdot}m/s$, $125g/m^3$, 1000 mJ 초과 및 $650^{\circ}C$ 초과로 나타났다. 평균입도가 $293.5{\mu}m$인 MWCNT 2의 $P_{max}$, $K_{st}$, LEL, MIE, MIT는 각각 6.2 bar, $42bar{\cdot}m/s$, $100g/m^3$, 1000 mJ 초과 및 $650^{\circ}C$ 초과로 나타났다. NFPA 499 Code에 따른 MWCNT 1, 2의 폭발강도와 점화감도는 각각 0.35와 0.01 미만으로 나타났기 때문에 MWCNT는 NFPA 499 Code에서 제시된 분진폭발 위험장소로 구분하여야 하는 가연성 분진으로 분류되지 않았다.

Keywords

References

  1. Lee, J. I. and Jung, H. T., "Technical Status of Carbon Nanotubes Composites," Korean Chem. Eng. Res., 46(1), 7-14(2008).
  2. Seo M. K. and Park, S. J., "Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites," Korean Chem. Eng. Res., 43(3), 401-406(2005).
  3. Park, H. S., "Study About the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites," Korean Chem. Eng. Res., 50(4), 729-732(2012). https://doi.org/10.9713/kcer.2012.50.4.729
  4. Harris, P. J. F., Carbon Nanotube and Related Structure, Cambridge University Press(2004).
  5. Lyu, S. C., Sok, J. H. and Han J. H., "Technical Trends of Carbon Nanotubes Growth Method," KIC NEWS, 12(4), 1-12(2009).
  6. NFPA 499, Recommended practice for the classification of combustible dusts and of hazardous (classified) locations for electrical installations in chemical process areas, National Fire Protection Association(2013).
  7. Amyotte, P. R. and Eckhoff, R. K., "Dust Explosion Causation, Prevention and Mitigation: An Overview," J. Chem. Health & Safety., 17(1), 15-28(2010). https://doi.org/10.1016/j.jchas.2009.05.002
  8. Cashdollar, K. L., "Overview of Dust Explosibility Characteristics," J. Loss Prev. in the Process Ind., 13, 183-199(2000). https://doi.org/10.1016/S0950-4230(99)00039-X
  9. Jaeger, N. and Siwek, R., "Prevent Explosions of Combustible Dusts," Chem. Eng. Progress, 25-37(1999).
  10. Eckhoff, R. K., Dust Explosion in the Process Industries (3rd ed.), Amsterdam: Gulf Professional Publishing(2003).
  11. Joseph, G., "Combustible Dusts: A Serious Industrial Hazard," J. Hazardous Materials, 142, 589-591(2007). https://doi.org/10.1016/j.jhazmat.2006.06.127
  12. Davis, S. G., Hinze, P. C., Hansen, O. R. and Wingerden, K. V., "Does Your Facility Have a Dust Problem: Methods for Evaluating Dust Explosion Hazards," J. Loss Prev. in the Process Ind., 24, 837-846(2011). https://doi.org/10.1016/j.jlp.2011.06.010
  13. Ebadat, V., "Dust Explosion Hazard Assessment," J. Loss Prev. in the Process Ind., 23, 907-912(2010). https://doi.org/10.1016/j.jlp.2010.05.006
  14. Myers, T. J., "Reducing Aluminum Dust Explosion Hazards: Case Study of Dust Inerting in An Aluminum Buffing Operation," J. Hazardous Materials, 159, 72-80(2008). https://doi.org/10.1016/j.jhazmat.2008.02.106
  15. EN 14034-1, Determination of Explosion Characteristics of Dust Clouds-Part 1: Determination of the Maximum Explosion Pressure $P_{max}$ of Dust Clouds, European Standard(2011).
  16. EN 14034-2, Determination of Explosion Characteristics of Dust Clouds-Part 1: Determination of the Maximum Rate of Explosion Pressure Rise $(dp/dt)_{max}$ of Dust Clouds, European Standard(2011).
  17. EN 14034-3, Determination of Explosion Characteristics of Dust Clouds-Part 1: Determination of the Lower Explosion Limit LEL of Dust Clouds, European Standard(2011).
  18. EN 13821, Potentially explosive atmospheres-explosion prevention and protection-Determination of minimum ignition energy of dust/ air mixtures, European Standard(2002).
  19. KS C IEC 61241-2-1, Electrical apparatus for use in the presence of combustible dust-Test method for determination the minimum ignition temperature of dust, Korean Industrial Standard(2003).
  20. Han, O. S. and Han, I. S., "Explosion hazards of aluminum powers with the variation of mean diameter," KIGAS, 18(4), 21-26(2014).
  21. Proust, Ch., Accorsi, A. and Dupont, L., "Measuring the violence of dust explosion with the 20-L sphere and with the standard ISO 1 $m^3$ vessel. Systematic comparison and analysis of the discrepancies," J. Loss Prev. in the Process Ind., 20, 599-606(2007). https://doi.org/10.1016/j.jlp.2007.04.032
  22. Han, O. S., Han, I. S. and Choi, Y. R., "Flame Propapagation Characteristics Through Suspended Combustible Particles in a Full-Scaled Duct," Korean Chem. Eng. Res., 47(5), 572-579(2009).
  23. Han, O. S., Han, I. S. and Choi, Y. R., "Prediction of Flame Propagation Velocity Based on the Behavior of Dust Particles," Korean Chem. Eng. Res., 47(6), 705-709(2009).
  24. Gao, W., Yu, J., Zhang, X., Li, J. and Wang, B., "Characteristics of Vented Nano-polymethyl Methacrylate Dust Explosions," Powder Technology, 283, 406-414(2015). https://doi.org/10.1016/j.powtec.2015.06.011
  25. Wu, H. C., Chang, R. C. and Hsiao, H. C. "Research of Minimum Ignition Energy for Nano Titanium Powder and Nano Iron Powder," J. Loss Prev. in the Process Ind., 22, 21-24(2009). https://doi.org/10.1016/j.jlp.2008.10.002