This study aims at the estimation of a river management flow in urban basin analyzing Sinchun basin to be the tributary of Kumho river basin. The river management flow has to satisfy a low flow as natural flow and an environmental preservation flow estimated by a dilution flow to satisfy a target water quality in drought flow. Therefore for the estimation of a river management flow in Sinchun in this study, first Tank model as a basin runoff model estimates a low flow, a drought flow from a flow duration curve in Sinchun, second QUAL2E model as water quality model simulates water quality in Sinchun and estimates environmental preservation flow to satisfy a target water qua%its, BOD 8 mg/l by a dilution flow derived from Kumho river, Nakdong river and around water. And the river management flow is estimated by addition of a use flow and a loss flow to more flow between a low-flow and an environmental preservation flow.
An iterative learning control scheme for exact-tracking control and parameter estimation of uncertain robotic system is preented. In the learning control structure, the control input converges globally and asymtotically to the desired input as iteration increases. Since convergence of parameter errors depends only on the persistent exciting condition of system trajectories along the iteration independently of the time-duration of trajectories, it may be achieved with system trajectories with small duration. In addition, the proposd learning control schemes are applicable to time-varying parametric systems as well as time-invariant systems, because the parameter estimation is performed at each fixed time along the iteration. In the parameter estimator, the acceleration information as well as the inversion of estimated inertia matrix are not used at all, which makes the proposed learning control schemes more feasible.
Despite their tilde application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today due to a static view far prefect progression. This study proposes a framework for estimation by learning based on a Linear Bayesian approach. As a project progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g. the expected project completion time as well as the probabilities of completing the project within talc due date and by a certain date. By Implementing such customized systems, project manager can be aware of changing project status more effectively and better revise resource allocation plans.
Despite their wide application of some traditional project management techniques like the Program Evaluation and Review Technique, they lack of learning, one of important factors in many disciplines today, due to a static view for project progression. This study proposes a framework for estimation by loaming based on a Linear Bayesian approach. As a project Progresses, we sequentially observe the durations of completed activities. By reflecting this newly available information to update the distribution of remaining activity durations and thus project duration, we can implement a decision support system that updates e.g., the expected project completion time as well as the probabilities of completing the project within the due bate and by a certain date. By implementing such customized system, project manager can be aware of changing project status more effectively and better revise resource allocation plans.
소프트웨어 개발 초기에 개발비용, 소묘인력과 기간을 추정하는 것은 소프트웨어공학 분야의 중요하면서도 어려운 문제이다. 기존 모델은 개발업체의 생산성 수준을 고려하지 않고 단순히 기능점수와 노력, 노력과 개발기간 관계에 대한 회귀분석을 통해 개발노력과 기간을 추정하는 모델을 제시하였다. 그러나 동일한 규모의 소프트웨어라도 개발업체의 생산성 수준에 따라 다른 노력의 양이 투입되며, 동일한 노력이 투입되더라도 생산성에 따라 개발기간이 달라진다. 생산성 수준을 고려하지 않은 제안된 모델들은 실제 개발될 프로젝트 적용에 제한점을 갖고 있다. 본 논문은 기존 모텔의 단점을 보완하기 위해 생산성을 고려하여 개발기간을 추정할 수 있는 모델들을 제안한다. 생산성에 기반 하여 다양한 방법으로 개발기간을 추정할 수 있는 모델을 제안하고 모델들의 성능을 비교하였다. 모델 성능 비교 결과 생산성에 기반 하여 소프트웨어 규모로부터 개발기간을 추정하는 모델이 단순하면서도 가장 좋은 결과를 얻었다. 본 모델은 사업 초기에 프로젝트 관리자에게 소프트웨어 개발 기간 의사결정 정보를 제공한다.
기존의 Markov Chain 모형으로 일강우량 모의시에 강우의 발생여부를 모의하고 강우일의 강우량은 Monte Carlo 시뮬레이션을 통해 일강우 분포 특성에 맞는 분포형에서 랜덤으로 강우량을 추정하는 것이 일반적이다. 이때 강우 지속기간에 따른 강도 및 강우의 시간별 분포 등의 강우 사상의 특성을 반영할 수 없다는 한계가 있다. 본 연구에서는 이를 개선하기 위해 강우 사상을 1일 지속강우, 2일 지속강우, 3일 지속강우, 4일이상 지속강우로 구분하여 강우의 지속기간에 따라 강우량을 추정하였다. 즉 강우 사상의 강우 지속일별로 총강우량의 분포형을 비매개변수 추정이 가능한 핵밀도추정(Kernel Density Estimation, KDE)를 적용하여 각각 추정하였고, 강우가 지속될 경우에 지속일별로 해당하는 분포형에서 강우량을 구하였다. 각 강우사상에 대해 추정된 총 강우량은 k-최근접 이웃 알고리즘(k-Nearest Neighbor algorithm, KNN)을 통해 관측 강우자료에서 가장 유사한 강우량을 가지는 강우사상의 강우량 일분포 형태에 따라 각 일강우량으로 분배하였다. 본 연구는 기존의 강우량 추정 방법의 한계점을 개선하고자 하였으며, 연구 결과는 미래 강우에 대한 예측에도 활용될 수 있으며 수자원 설계에 있어서 기초자료로 활용될 수 있을 것으로 기대된다.
Kim, Kwang-Soo;S.Elwynn Taylor;Mark L.Gleason;Kenneth J.Koehler
한국농림기상학회:학술대회논문집
/
한국농림기상학회 2001년도 춘계 학술발표논문집
/
pp.163-166
/
2001
One of the most important factors influencing the outbreak and severity of foliar diseases is the duration of wetness from dew deposition, rainfall, or irrigation. Models may provide good alternatives for assessing leaf wetness duration (LWD) without the labor, cost, and inconvenience of making measurements with sensors.(omitted)
To provide the basic information for the water quality management of the Sumjin River Basin, delivery ratios for flow duration were studied. Using the day-interval data set of discharge and water quality observed from the Chooryeong-cheon watershed, the flow-duration and discharge-load relation curves for the watershed were established, then the load-duration curve was constructed. Delivery ratios for flow duration were also developed. Delivery ratios showed wide variation according to flow conditions. In general, delivery ratio of high flow condition showed higher value reflecting nonpoint source pollution contribution from the forest dominating watershed. To resolve this problem, a regression model explaining the relation between flow rate and delivery ratio was suggested. The delivery ratios for different flow regime could be used for pollutant load estimation and TMDL (Total maximum daily load) development.
Total maximum daily load have been implemented and indicated that nonpoint discharge coeffients in flow duration curve were 0.50 of Normal flow duration ($Q_{185}$) and 0.15 of low flow duration($Q_{275}$). By using SWAT, nonpoint discharge coefficients are studied with the conditions of the instream flow and the rainfall in two study areas. The nonpoint discharge coefficient average of BOD and TP for normal flows duration in 3 years are 0.32~0.36 and 0.28~0.31. For the low flow duration, the nonpoint discharge coefficient avergae of BOD and TP were 0.10~0.12 and 0.10~0.11. These are lower than the coefficients of total maximum load regulation. There are big differences between one of regulation and one of SWAT for the normal flow duration. With the consideration of rainfall condition, the nonpoint discharge coefficient of flood flow duration are influenced on the amount of rainfalls. However, the nonpoint discharge coefficients of normal flow duration and low flow duration are not effected by the rainfall condition. Since the spatial distribution and geomorphological characteristics could be considered with SWAT, the estimation of nonpoint discharge coefficient in watershed model is better method than the use of the recommended number in the regulation.
조간대 저서생물들의 서식환경을 결정하는 중요한 인자 중의 하나인 노출시간을 추정하는 공식을 개발하였다. 이 공식은 기존의 1시간 간격, 1년 기간 조위자료를 이용하여 노출시간을 추정하는 방법과는 달리 대부분 연안의 기본 조석 정보에 해당하는 주요 4분조 조화상수들을 이용하여 노출시간을 간단하게 계산할 수 있다. 서해안의 관측 조위자료를 이용한 노출시간과 본 연구에서 개발한 공식에 의한 추정결과를 비교한 결과 RMS 오차는 0.8-1.4%로 파악되었다. 본 공식은 장기간의 조위자료가 없는 조간대 지역에서 간단하면서도 정확한 노출 시간 및 침수시간 추정에 활용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.