• Title/Summary/Keyword: Durable design

Search Result 169, Processing Time 0.022 seconds

A Comparative Study on Power Tool Manufacturers' Products Spec. and Design Development Features - By the Case Study on BOSCH, BLACK&DECKER and KEYANG Electrics- (전동공구 회사의 제품사양별 디자인개발특성 비교연구 -보슈(BOSCH), 블랙앤데커(BLACK&DECKER), 계양전기 사례를 중심으로 -)

  • 채승진
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.383-392
    • /
    • 2004
  • The power tools is the product using working power generated by electric motor. Many companies are manufacturing numerous devices. Main features of tools are included various assembled products, small, light and solid and durable enough to match several standards. Fundamental requirements for the product is excellent performance and convenience for use. The quality of them depends on the equipped motor'(s) capability, accuracy of gear and endurance against worn-out. By adapting the state-of-the-art parts, they could be used in the place from home to heavy industry broadly. They can be classified electronic drills, grinders, saws and sanders families for the household appliances. For industrial tools, bore drill, grinder, polisher, and driver drill are classified as special and high priced group. This study presents the strategy of power tool development of BOSCH, BLACK&DECKER and KEYANG. Their products were analyzed in terms of product line and product mix concept. Then they are examined by design elements, such as color, shape and material for housing. As an analysis method, the image scale parameter and criteria were applied to each company's product.

  • PDF

Numerical Analysis-Based Design of PEMFC Channel, Fabrication of Channels, and Performance Test Using SU-8 (수치해석을 통한 PEMFC 채널의 설계와 SU-8을 이용한 채널 제작 및 성능 평가)

  • Choi, In-Jea;Wang, Hak-Min;Choi, Kap-Seung;Kim, Hyung-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.349-354
    • /
    • 2010
  • Fuel cells have attracted enormous interest as new power sources because the cells can be used to solve the problem of environmental pollution as well as the natural-resource exhaustion problem. In this study, hydrogen-gas flow in microchannels of different shapes was numerically analyzed to improve the efficiency of a microfuel cell. Flow characteristics in six microchannels of different shapes but under identical boundary conditions were simulated. The analysis result shows that the flow characteristics such as velocity, uniformity, and flow rate, greatly depend upon the channel shape. This implies that the efficiency of microfuel cell can be expected to be increased by adopting the optimal configuration of channel shape for hydrogen-gas flow. The experimental results show that power density of a PEMFC with a microflow channel is higher than that of a PEMFC without a microflow channel; however, a durable catalyst is required in MEA.

A Study on the Expression of Fashion Jewelry Using the Characteristics of Paper Mulberry Fiber (닥섬유 특성을 이용한 패션 주얼리 표현 연구)

  • Lee, Jihyun;Jeon, Yangbae;Kan, Hosup
    • Journal of Fashion Business
    • /
    • v.24 no.5
    • /
    • pp.35-51
    • /
    • 2020
  • To satisfy consumers' desire to enjoy their own individuality and cultural trends, the discovery of various materials and the expression of materials embodying their characteristics are increasingly important in the fashion jewelry industry. This study examines, paper mulberry fiber, a raw material of hanji that has been excavated as a new material for fashion jewelry, is durable as wall as, soft and easy to form, has a unique texture along with, excellent aesthetic quality, and expresses various colors, thereby differentiating itself from traditional fashion jewelry materials. The material itself also has symbolic significance as an approach to discovering new sustainable materials for fashion jewelry to ensure increased specificity of the product based on the premise of freedom of expression. The weight and optimal drying time of chicken fiber were derived for the study of fashion jewelry expression using the characteristics of paper mulberry fiber. The techniques of casting, deflection, packing and winding (winding beads with fibers and straps) were derived and four brooches were produced in total. This study is meaningful for the future of, the fashion jewelry industry as it presents the uses of new materials such as paper mulberry fiber to induce multidisciplinary consumption and to suggest a direction for the creation of new value-added products. Further, in order to expand the realm of fashion jewelry industry with our own competitive products that have secured our cultural identity and uniqueness in the global market, there must be continued follow-up research on mass production methods for industrialization.

The Aesthetic Consciousness Latent in the Korean People's White Clothes Customs (한국인의 백의풍속(白衣風俗)에 내재된 미의식)

  • Kim, Eun-Kyoung;Kim, Young-In
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.7 s.107
    • /
    • pp.1-17
    • /
    • 2006
  • This study purposed to examine Korean people's white clothes custom historically and to explain the aesthetic consciousness latent in the custom. Korean people preferred white clothes, even up to foreigners called them White-clad folk. Not only as in old historical literatures, but also in Soo-suh, Shin-Dang-suh including Sam-Kuk-Ji in China, white clothes were a real symbol to Korean people, ranging chronically far back to the age of ancient tribal countries, Sam-Kuk Period through Koryo Dynasty and even to modern age near the end of Chosun Dynasty, wearing with pleasure regardless of age, sex or social position. Even King himself in Koryo Dynasty is said to have worn white clothes when he was out of official hours. During the Koryo and Chosun Dynasty, white clothes were sometimes prohibited for various reasons including conflicts with the theories of yin-yang and the five elements but such regulations were not effective. To Korean people, white clothes were ordinary people's everyday dress as well as noble people's plain suits, saints' uniforms with religious meanings, ceremonial costumes, funeral garments, etc. The various uses show that white clothes have been worn by many people. The unique custom that a People have worn white clothes consistently for such a long time may contain very deep symbolic meanings representing the people's sentiments and spirits. The present study understood that the meanings come from religious sacredness, magical wish for brightness, the pursuit of purity originating from the people's national traits, assimilation with nature and the will to attain whole ascetic personality. Aesthetic attitudes based on aesthetic values summed up as sacredness, brightness, purity, assimilation with nature, asceticism, etc. are the aesthetic consciousness pursued by Koreans through their white clothes. For Koreans, white color is the origin of their color sense coming from primitive religions such as worshipping the sun and the heaven. In this way, Korean people's preference for white clothes began with primitive religions, was mixed with various social, cultural and religious influences and finally was settled as their durable spirit, symbol and beauty.

A Study on the way to improve the rear van's durability of Korean Light Tactical Vehicle (한국형 전술차량 후방밴 강성·강도 보강을 통한 내구성 향상에 관한 연구)

  • Park, Jinwon;Kim, Dooho;Song, Buguen;Kim, Seonjin;Yun, Sangjin
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.2
    • /
    • pp.269-282
    • /
    • 2018
  • Purpose: The purpose of this study was to improve the FRP Van's durability by analyzing the problematic parameters, redesigning the rear van, and verifying the design drafts using the CAE analysis & Rig test. Methods: The collected data through the government quality inspection and field spot check were thoroughly analyzed through the characteristics diagram and the improvement suggestions were verified by performing CAE analysis, like the dynamic stiffness, Torsional stiffness, open/close condition's strength, Full car durability and Carrying out the actual test. Results: The results of this study are as follows; The output of CAE analysis shows that improvement suggestions have considerable effects on the reinforcement of FRP structure, and the actual torsion and open/close condition durability test prove that rear van may have durable life which is equivalent to vehicle life cycle. Conclusion: The structural weakness of KLTV's FRP rear van was overcome by applying the stiffener in rear van and changing the bonding method of each FRP pieces. That suggestions were proved using CAE analysis and Rig test.

A Study on the Properties of Roller Compacted Concrete Pavement for Environmental Friendly Bike Road (친환경 자전거도로를 위한 롤러 다짐 콘크리트 포장의 기초물성에 관한 연구)

  • Lee, Chang-Ho;Kang, Jae-Gyu;Park, Cheol-Woo;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.103-111
    • /
    • 2010
  • Recently, usage bicycle has been encouraged to reduce energy consumption and $CO_2$. For this purpose, lots of bike road construction are planned. Typical type of pavement used in bikeroad such as asphalt concrete pavement, portland cement concrete pavement, colored pavement, soil pavement. However, these pavement types may need high construction cost comparing the required capacity of bike road. In this study, roller compacted concrete pavement which are economical and durable, are investigated to use as bike road pavement. The optimum compaction level and mix design of roller compacted concrete pavement are suggested by exploring strength test with various mixture ratio and compaction level, Also durability was examined based on freeze-thaw and scaling test. In addition, the cost and amount of carbon emission during in the construction of roller compacted concrete were evaluated and compare with the cost and carbon emission of typical portland cement concrete.

Shear bond strengths of aged and non-aged CAD/CAM materials after different surface treatments

  • Kilinc, Hamiyet;Sanal, Fatma Ayse;Turgut, Sedanur
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.273-282
    • /
    • 2020
  • PURPOSE. To assess shear bond strengths (SBS) of resin composites on aged and non-aged prosthetic materials with various surface treatments. MATERIALS AND METHODS. Cerasmart (CE), Vita Enamic (VE), Vita Mark II (VM), and IPS e.max CAD (EC) blocks were sliced, and rectangular-shaped specimens (14 × 12 × 1.5 mm; N = 352) were obtained. Half of the specimens were aged (5000 thermal cycles) for each material. Non-aged and aged specimens were divided into 4 groups according to the surface treatments (control, air abrasion, etching, and laser irradiation; n = 11) and processed for scanning electron microscopy (SEM). The repair procedure was performed after the surface treatments. SBS values and failure types were determined. Obtained data were statistically analyzed (P≤.05). RESULTS. The material type, surface treatment type, and their interactions were found significant with regard to SBS (P<.001). Aging also had a significant effect on prosthetic material-resin composite bonding (P<.001). SBS values of non-aged specimens ranged from 12.16 to 17.91 MPa, while SBS values of aged specimens ranged from 9.46 to 15.61 MPa. Non-aged VM in combination with acid etching presented the highest score while the control group of aged CE showed the lowest. CONCLUSION. Etching was more effective in achieving durable SBS for VM and EC. Laser irradiation could be considered as an alternative surface treatment method to air abrasion for all tested materials. Aging had significant effect on SBS values generated between tested materials and resin composite.

Effectiveness of fibers and binders in high-strength concrete under chemical corrosion

  • Nematzadeh, Mahdi;Fallah-Valukolaee, Saber
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.243-257
    • /
    • 2017
  • Investigating the properties and durability of high-strength concrete exposed to sulfuric acid attack for the purpose of its application in structures exposed to this acid is of outmost importance. In this research, the resistance and durability of high-strength concrete containing macro-polymeric or steel fibers together with the pozzolans of silica fume or nano-silica against sulfuric acid attack are explored. To accomplish this goal, in total, 108 high-strength concrete specimens were made with 9 different mix designs containing macro-polymeric and steel fibers at the volume fractions of 0.5, 0.75, and 1.0%, as well as the pozzolans of silica fume and nano-silica with the replacement levels of 10 and 2%, respectively. After placing the specimens inside a 5% sulfuric acid solution in the periods of 7, 21, and 63 days of immersion, the effect of adding the fibers and pozzolans on the compressive properties, ultrasonic pulse velocity (UPV), and weight loss of high-strength concrete was investigated and the respective results were compared with those of the reference specimens. The obtained results suggest the dependency of the resistance and durability loss of high-strength concrete against sulfuric acid attack to the properties of fibers as well as their fraction in concrete volume. Moreover, compared with using nano-silica, using silica fume in the fibrous concrete mix leads to more durable specimens against sulfuric acid attack. Finally, an optimum solution for the design parameters where the crushing load of high-strength fibrous concrete is maximized was found using response surface method (RSM).

Effects of Surface Material of Forms on Durability of Offshore Concrete (구조물의 표면마감 특성이 해양콘크리트의 내구성에 미치는 영향)

  • Park, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.233-240
    • /
    • 2008
  • This paper presents an experimental study on the air contents and the chloride penetration in offshore concrete depending on the types of forms. Three types of concretes(plain, MSF, and FA concretes) with four kinds of forms(wood, coating wood, steel, and polypropylene film) were investigated. The test results show that the air contents in the concrete cured with steel and polypropylene forms were higher than those with wood and coating wood forms. The concrete with wood forms has the least air content. The variation of chloride ingress time was large depending on the types of forms on the same concrete, i.e. 13.2, 20.3, and 17.7% for Plain, MSF, and FA concretes, respectively. Consequently, the surface conditions of forms should be considered for design of durable concrete.

Investigation of stiffening scheme effectiveness towards buckling stability enhancement in tubular steel wind turbine towers

  • Stavridou, Nafsika;Efthymiou, Evangelos;Gerasimidis, Simos;Baniotopoulos, Charalampos C.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1115-1144
    • /
    • 2015
  • Current climate conditions along with advances in technology make further design and verification methods for structural strength and reliability of wind turbine towers imperative. Along with the growing interest for "green" energy, the wind energy sector has been developed tremendously the past decades. To this end, the improvement of wind turbine towers in terms of structural detailing and performance result in more efficient, durable and robust structures that facilitate their wider application, thus leading to energy harvesting increase. The wind tower industry is set to expand to greater heights than before and tapered steel towers with a circular cross-section are widely used as more capable of carrying heavier loads. The present study focuses on the improvement of the structural response of steel wind turbine towers, by means of internal stiffening. A thorough investigation of the contribution of stiffening rings to the overall structural behavior of the tower is being carried out. These stiffening rings are placed along the tower height to reduce local buckling phenomena, thus increasing the buckling strength of steel wind energy towers and leading the structure to a behavior closer to the one provided by the beam theory. Additionally to ring stiffeners, vertical stiffening schemes are studied to eliminate the presence of short wavelength buckles due to bending. For the purposes of this research, finite element analysis is applied in order to describe and predict in an accurate way the structural response of a model tower stiffened by internal stiffeners. Moreover, a parametric study is being performed in order to investigate the effect of the stiffeners' number to the functionality of the aforementioned stiffening systems and the improved structural behavior of the overall wind converter.