• Title/Summary/Keyword: Durable design

Search Result 169, Processing Time 0.023 seconds

Heat Analysis for Heat Sink Design Using Finite Element Method (유한요소법을 이용한 방열판 설계를 위한 열해석)

  • Jang, Hyun-Suk;Lee, Joon-Seong;Park, Dong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1027-1032
    • /
    • 2013
  • LED is standing in the limelight as a light part of the low-carbon green energy. While LEDs are eco-friendly, efficient and durable, extreme heat rises can cause their durability to decrease, with 80% of the power supply being turned into heat energy. Heat radiation systems are important because rising temperatures affect the lifetime of LED elements. Therefore, in this paper, thermal analysis was performed for the shape of heat sink to the LED bulb. Also, it is applied the temperature control systems to our products for optimal performance.

Experimental Analysis of Clutch-Fill Parameters for Automatic Transmission (자동변속기 클러치 충전제어 파라미터의 실험적 특성분석)

  • Jung, G.H.;Park, D.H.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.47-54
    • /
    • 2014
  • Clutches are an integral part of the automatic transmission for changing gears. Modern automatic transmissions make extensive use of wet multiple-disc clutches employing hydraulic actuation mechanism with electronic control. Although nowadays, highly advanced shifting algorithm implements the superior shift quality and transmission efficiency, its performance should be based on smooth, reliable engagement with a reasonably durable friction material as well as stable clutch piston dynamics. Particularly, clutch filling control is the crucial part of shifting process because only the open-loop control is available due to the lack of measurement. In this paper, the effect of clutch-fill control parameters on clutch piston dynamics is experimentally investigated by using clutch piston test equipment which enables the clutch piston to actuate similar to real shifting conditions. The experimental analysis results can be expected to be utilized for the calibration of proportional solenoid valve as reference current profile data in vehicle test.

Development of Compact Towers with Insulation Arm in Korea (절연암 적용 컴팩트 철탑 개발)

  • Lee, Won-kyo;Yun, Cheol-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.63-66
    • /
    • 2018
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea as well as the other countries. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed compact towers that are more attractive, well blend into the surrounding environment and much more economical than underground transmissions. This paper shows the design of a compact towers with insulation arm, in order to reduce the height of tower and the separation between phases. The compact tower can be installed in a narrow right-of-way. Insulation arms are easily applied to lattice and steel tubular towers instead of steel arms. Compact towers with insulation arm are also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people. Compact tower compared with a conventional tower, insulation arms reduces the width and height of the tower by 20% and 15% respectively.

A State-of-the-Art Review of Graphene-Based Corrosion Resistant Coatings for Metal Protection

  • Zade, Ganesh S.;Patil, Kiran D.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.390-411
    • /
    • 2022
  • Any design engineer or coating formulator's primary objective is to protect metals. Large investments in terms of money, time, labour, and other resources are necessary for constructing large-scale machinery and structures. In terms of economy, the structure's lifespan should be as long as feasible to create revenue. It is becoming essential to protect metal substrates from corrosion to prolong the lifespan of such huge structures. One of the most exciting, durable, useful, and effective methods to protect metals from corrosion is the application of corrosion-resistant coating. Graphene is a novel material with a wide range of applications because of its extraordinary features. The use of graphene in coating creates an obstacle and complicates the path for corrosive medium to reach the metal. As the path to the metal elongates, the corrosion medium takes longer to reach the metal. Thus, metal corrosion can be avoided. In this paper, the importance of graphene in coating formulation is discussed, including chemical modifications of graphene, the effect of graphene concentration on corrosion inhibition, and the contact angle of coating. This review also highlights the significance of water-based corrosion-resistant coating for preventing environmental damage.

Influence of trapezoidal and sinusoidal corrugation on the flexural capacity of optimally designed thin-walled beams

  • Erdal, Ferhat;Tunca, Osman;Taylan, Harun;Ozcelik, Ramazan;Sogut, Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Major engineering requirements and technological developments in the steel construction industry are discussed to support a new innovative system, namely corrugated web beams, for future structural projections. These new-generation steel beams, fabricated as welded plate girders with corrugated webs, are designed to combine large spans with very low weight. In the present study, the flexural capacity of optimally designed trapezoidal and sinusoidal corrugated web beams was aimed at. For this purpose, the new metaheuristic methods, specifically hunting search and firefly algorithms, were used for the minimum weight design of both beams according to the rules of Eurocode EN 1193 15 and DASt-Ri 015. In addition, the strengthening effects of the corrugation geometry at the web posts on the load capacity of fabricated steel beams were tested in a reaction frame. The experimental tests displayed that the lateral capacity of trapezoidal web beams is more durable under flexural loads compared to sinusoidal web beams. These thin-walled beams were also simulated using a 3-D finite element model with plane strain to validate test results and describe the effectiveness of the ABAQUS software.

Finite element analysis of the femur fracture for a different total hip prosthesis (Charnley, Osteal, and Thompson)

  • Mohammed El Sallah Zagane;Moulgada Abdelmadjid;Murat Yaylaci;Sahli Abderahmen;Ecren Uzun Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.583-588
    • /
    • 2023
  • Total hip replacement is a crucial intervention for patients with fractured hips who face challenges in natural recovery. The design of durable prostheses requires a comprehensive understanding of the natural processes occurring in bone. This article focuses on static loading analysis, specifically during stumbling activity, aiming to enhance the longevity of prosthetic implants. Three distinct implants, Charnley, Osteal, and Thompson, were selected for a detailed study to determine the most appropriate model. The results revealed critical insights into the distribution of Von Mises stresses on the components of femoral arthroplasty, including the cement, implant, and cortical bone. Furthermore, the examination of shear stress within the cement emerged as a pivotal aspect for all three implants, playing a crucial role in evaluating the performance and durability of hip prostheses. The conclusions drawn from this study strongly suggest that the Thompson model stands out as the most suitable choice for hip joint implants.

A Study on the Long-Run Consumption Risk in Foreign Currency Risk Premia (장기소비 위험을 이용한 통화포트폴리오 수익률에 관한 연구)

  • Liu, Won-Suk;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.11 no.10
    • /
    • pp.55-62
    • /
    • 2013
  • Purpose - The purpose of this study is to suggest a risk factor that significantly explains foreign currency risk premia. In recent years, some studies have found that the performance of the simultaneous consumption risk model improves considerably when tested on foreign currency portfolios, which are constructed based on the international interest rates differentials. However, this paper focuses on the long-run consumption risk factor. In our empirical research, we found that the real excess returns of high interest rate currency portfolios depreciate on average, when the future American long-run consumption growth rate appears low. This makes the high interest rate currency portfolios have relatively high risk premia. Meanwhile, the real excess returns of low interest rate currency portfolios appreciate on average, under the same conditions, which results in relatively low risk premia for these portfolios. Therefore, this long-run consumption risk factor might explain why low interest rate currencies do not appreciate as much as the interest rate differential, and why high interest rate currencies do not depreciate as much as the interest rate differential. Research design, data, methodology - In our explanation, we provide new evidence on the success of long-run consumption risks in currency risk premia by focusing on the long-run consumption risks borne by American representative investors. To uncover the hidden link between exchange rates and long-run consumption growth, we set the eight currency portfolios as our basic assets, which have been built based on the foreign interest rates of eighty countries. As these eight currency portfolios are rebalanced every year, the first group always contains the lowest interest rate currencies, and the last group contains the highest interest rate currencies. Against these basic eight currency portfolios, we estimate the long-run consumption risk model. We use recursive utility framework and the stochastic discount factor that depends on the present value of expected future consumption growth rates. We find that our model is optimized in the two-year period of constructing the durable consumption expectation factor. Our main results surprisingly surpass the performance of the existing benchmark simultaneous consumption model in terms of R2, relatively risk aversion coefficient γ, and p-value of J-test. Results - The performance of our model is superior. R2, relatively risk aversion coefficient γ, and p-value of J-test of our long-run durable consumption model are 90%, 93%, and 65.5%, respectively, while those of EZ-DCAPM are 87%, 113%, and 62.8%, respectively. Thus, we can speculate that the risk premia in foreign currency markets have been determined by the long-run consumption risk. Conclusions - The aggregate long-run consumption growth risk explains a large part of the average change in the real excess returns of foreign currency portfolios. The real excess returns of high interest rate currency portfolios depreciate on average when American long-run consumption growth rate is low, and the real excess returns of low interest rate currency portfolios appreciate under the same conditions. Thus, the low interest rate currency portfolios allow investors to hedge against aggregate long-run consumption growth risk.

A Study of Digital Make-up for the Elderly Using Adobe Photoshop CS4 (포토샵 CS4를 이용한 디지털 노인분장에 관한 연구)

  • Moon, Jung-Eun;Kim, Sook-Jin
    • Journal of the Korean Society of Costume
    • /
    • v.59 no.10
    • /
    • pp.85-97
    • /
    • 2009
  • This study aims at applying Photoshop functions to digital make-up(DM) for aging effect based upon the knowledge of phrenology, comparing the result with that of the real or off-line make-up(OM) and identifying any possible difference between two methods: which contributes to understanding the potential and problems of DM at application level. This study aims at suggesting a method to apply computer graphics(CGs) to special effect make-up for aging effect through a case, contributing to attracting academic concerns and building theoretical frameworks for DM. It used 'Aging Process' in Adobe Photoshop CS4 Extended(CS4E) to change a young girl into a senior lady. In the process of DM, the study applies various tools and methods to making face wrinkled, finds the most effective way among them for each area of face, suggests a method to integrate the ways and shows the result of the method. Compared with OM, DM using CS4E is the less constrained work regarding procedure and time. Specifically, it can save the time tremendously because the reiterative operation of work can be omitted, when the same work is repeated, using 'Action' function which memorizes the history of the work. Once a DM work is produced, since it is durable, reusable and convertible to various images with additional operations, it seems very economical as well as highly promising to market the work through on-line sales. Regarding face features and skin, it reviewed literature in make-up and phrenology while it used Photoshop CS4 Extended tools to demonstrate a case of aging effect by combining and painting pictures of a young lady and a senior citizen.

Development of Functional Indoor Apparel Considering Toddlers' Behavioral Characteristics - Focus on 3-6-Year Old Boys - (유아(幼兒)의 특성을 고려한 기능적 실내복 디자인 개발 - 만 3-6세 남아를 중심으로 -)

  • Nam, Young-Ran;Choi, Hei-Sun
    • Journal of the Korean Society of Costume
    • /
    • v.63 no.1
    • /
    • pp.81-96
    • /
    • 2013
  • We interviewed and surveyed parents of 3 to 6-year-old boys in order to determine designs for indoor apparel that appealed to toddlers. In addition, on the basis of the behavioral characteristics of such boys, improvements in the development of indoor apparels were suggested. Parents preferred indoor apparels because it could be worn as underwear when the kid is outdoors and as outerwear when indoors. These apparels were popular with toddlers. Therefore, indoor apparel that gives the impression of outerwear while performing the function of underwear was designed. Underwear fabric was used, but outerwear apparel design was partially adopted. In order to improve the activity, fabric that could be stretched in any direction was used for the sleeves and pant legs, while organic fabric with soft texture was used for the trunk part of the apparel. Dark-colored material was used for the chest and elbow parts of the clothes in order to prevent contamination in these parts. In particular, a bib was used to prevent contamination in the chest part. Given that toddlers engage in many activities, the fabric needed to be durable, so this led to thick materials being used for the knee part. As certain parents complained about the short length for tops, we increased the length of the tops by 5cm. In the survey items that investigated overall wearability, ease, and suitability for toddlers' activities, the test apparel obtained a higher score than existing apparel did. This indicates that the overall suitability of the newly designed apparel was improved.

Creative Design of Cap for Wheel and Axle of Railway Vehicle by Using TRIZ/CAE (TRIZ/CAE를 활용한 철도차량 윤축용 캡의 창의적 설계)

  • Huh, Yong-Jeong;Kim, Jae-Min;Hong, Sung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2581-2587
    • /
    • 2013
  • This paper aims at the design of wheel and axle with cap. The cap is conceptually designed by using TRIZ/CAE. Wheel axle is used at railway vehicle to safety and it is always investigated to reduce the railway vehicle weight. The cap has hollow shaft with the material of SM45C. Cap is located in the bearing seat of wheel and axle. The cap becomes durable within the allowable stress of EN13103, 13104 standard. In this study, the strength of wheel and axle with cap becomes higher than that of hollow shaft. The weight of wheel and axle with cap becomes lower by about 6.75 percent than that of solid shaft. The confidence of wheel and axle with cap can be improved by comparing with solid and hollow shafts.