Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.5.390

A State-of-the-Art Review of Graphene-Based Corrosion Resistant Coatings for Metal Protection  

Zade, Ganesh S. (School of Chemical Engineering, Dr. Vishwanath Karad MIT World Peace University)
Patil, Kiran D. (School of Chemical Engineering, Dr. Vishwanath Karad MIT World Peace University)
Publication Information
Corrosion Science and Technology / v.21, no.5, 2022 , pp. 390-411 More about this Journal
Abstract
Any design engineer or coating formulator's primary objective is to protect metals. Large investments in terms of money, time, labour, and other resources are necessary for constructing large-scale machinery and structures. In terms of economy, the structure's lifespan should be as long as feasible to create revenue. It is becoming essential to protect metal substrates from corrosion to prolong the lifespan of such huge structures. One of the most exciting, durable, useful, and effective methods to protect metals from corrosion is the application of corrosion-resistant coating. Graphene is a novel material with a wide range of applications because of its extraordinary features. The use of graphene in coating creates an obstacle and complicates the path for corrosive medium to reach the metal. As the path to the metal elongates, the corrosion medium takes longer to reach the metal. Thus, metal corrosion can be avoided. In this paper, the importance of graphene in coating formulation is discussed, including chemical modifications of graphene, the effect of graphene concentration on corrosion inhibition, and the contact angle of coating. This review also highlights the significance of water-based corrosion-resistant coating for preventing environmental damage.
Keywords
Graphene; Corrosion resistance; Water base coating; Metal protection; Corrosive media;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I. Press, Recent advances in epoxy coatings for corrosion protection of steel?: Experimental and modelling approach - A review, no. May (2022).
2 A. A. Farag, Applications of nanomaterials in corrosion protection coatings and inhibitors, Corrosion Reviews, pp. 1 - 20 (2020). Doi: https://doi.org/10.1515/corrrev2019-0011   DOI
3 L. Guadagno, M. Raimondo, V. Vittoria, L. Vertuccio, C. Naddeo, S. Russo, B. de Vivo, P. Lamberti, G. Spinelli, and V. Tucci, Development of epoxy mixtures for application in aeronautics and aerospace, RSC Advances, 4, 15474 (2014). Doi: https://doi.org/10.1039/c3ra48031c   DOI
4 X. Zeng, L. Ye, K. Guo, R. Sun, J. Xu, and C. P. Wong, Fibrous Epoxy Substrate with High Thermal Conductivity and Low Dielectric Property for Flexible Electronics, Advanced Electronic Materials, 2, 1 (2016). Doi: http://doi.org/10.1002/aelm.201500485   DOI
5 L. C. Tang et al., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites, Carbon, 60, 16 (2013). Doi: https://doi.org/10.1016/j.carbon.2013.03.050   DOI
6 S. Kim, T. Le, C. S. Park, G. Park, K. H. Kim, S. Kim, O. S. Kwon, G. T. Lim, and H. Yoon, A solution-processable, nanostructured, and conductive graphene/ polyaniline hybrid coating for metal-corrosion protection and monitoring, Scientific Reports, 7, 1 (2017). Doi: https://doi.org/10.1038/s41598-017-15552-w   DOI
7 A. Mohammadzadeh, H. Ghafouri Taleghani, and M. S. Lashkenari, Preparation and comparative study of anticorrosion nanocomposites of polyaniline/graphene oxide/clay coating, Journal of Materials Research and Technology, 13, 2325 (2021). Doi: https://doi.org/10.1016/j.jmrt.2021.05.098   DOI
8 R. R. Abakah, F. Huang, Q. Hu, Y. Wang, and L. Jing, Comparative study of corrosion properties of different graphene nanoplate/epoxy composite coatings for enhanced surface barrier protection, Coatings, 11, 1 (2021). Doi: https://doi.org/10.3390/coatings11030285   DOI
9 S. K. Yadav and J. W. Cho, Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites, Applied Surface Science, 266, 360 (2013). Doi: https://doi.org/10.1016/j.apsusc.2012.12.028   DOI
10 K. Rajitha, K. N. S. Mohana, A. Mohanan, and A. M. Madhusudhana, Evaluation of anti-corrosion performance of modified gelatin-graphene oxide nanocomposite dispersed in epoxy coating on mild steel in saline media, Colloids Surfaces A: Physicochemical and Engineering Aspects, 587, 124341 (2020). Doi: https://doi.org/10.1016/j.colsurfa.2019.124341   DOI
11 J. P. S. Farinha, S. Picarra, C. Baleizao, and J. M. G. Martinho, Smart polymer nanoparticles for high-performance water-based coatings, Industrial Applications for Intelligent Polymers and Coatings, pp. 619 - 645 (2016). Doi: https://doi.org/10.1007/978-3-319-26893-4_29   DOI
12 A. S. H. Makhlouf, Techniques for synthesizing and applying smart coatings for material protection, Handbook of Smart Coatings for Materials Protection, pp. 56 - 74, Woodhead (2014). Doi: https://doi.org/10.1533/9780857096883.1.56   DOI
13 D. S. Chauhan, M. A. Quraishi, K. R. Ansari, and T. A. Saleh, Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario, Progress in Organic Coatings, 147, 105741 (2020). Doi: https://doi.org/10.1016/j.porgcoat.2020.105741   DOI
14 S. K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, Graphene research and their outputs: Status and prospect, Journal of Science: Advanced Materials and Devices, 5, 10 (2020). Doi: https://doi.org/10.1016/j.jsamd.2020.01.006   DOI
15 M. Mattone, S. Rescic, F. Fratini, and R. M. Del Fa, Experimentation of Earth-Gypsum Plasters for the Conservation of Earthen Constructions, International Journal of Architectural Heritage, 11, 763 (2017). Doi: https://doi.org/10.1080/15583058.2017.1290850   DOI
16 S. Ding, T. Xiang, C. Li, S. Zheng, J. Wang, M. Zhang, C. Dong, W. Chan, Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel, Materials & Design, 117, 280 (2017). Doi: https://doi.org/10.1016/j.matdes.2016.12.084   DOI
17 B. Kuly, A critical review on the production and application of graphene and graphene-based materials in anticorrosion coatings, Critical Reviews in Solid State and Materials Sciences, 47, 309 (2022). Doi: https://doi.org/10.1080/10408436.2021.1886046   DOI
18 H. Shi, W. Liu, Y. Xie, M. Yang, C. Liu, F. Zhang, S. Wang, L. Liang, K. Pi, Synthesis of carboxymethyl chitosan-functionalized graphene nanomaterial for anticorrosive reinforcement of waterborne epoxy coating, Carbohydrate Polymers, 252, 117249 (2021). Doi: https://doi.org/10.1016/j.carbpol.2020.117249   DOI
19 X. Zhou, H. Huang, R. Zhu, X. Sheng, D. Xie, and Y. Mei, Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of waterborne epoxy coatings, Prog. Org. Coatings, 136, 105200 (2019). Doi: https://doi.org/10.1016/j.porgcoat.2019.06.046   DOI
20 P. Wang and D. Cai, Preparation of Graphene-Modified Anticorrosion Coating and Study on Its Corrosion Resistance Mechanism, International Journal of Photoenergy, 2020, Article ID 8846644, Doi: https://doi.org/10.1155/2020/8846644   DOI
21 C. Vargel, Uniform corrosion, Corrosion of Aluminium, 2nd, pp. 159 - 162 (2020). Doi: https://doi.org/10.1016/b978-0-08-099925-8.00013-2   DOI
22 Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials, 10, 424 (2011). Doi: https://doi.org/10.1038/nmat3001   DOI
23 A. Kadhim, A. A. Al-Amiery, R. Alazawi, M. K. S. AlGhezi, and R. H. Abass, Corrosion inhibitors. A review, International Journal of Corrosion and Scale Inhibition, 10, 54 (2021). Doi: https://doi.org/10.17675/2305-6894-2021-10-1-3   DOI
24 N. H. Othman, M. Che Ismail, M. Mustapha, N. Sallih, K. E. Kee, and R. Ahmad Jaal, Graphene-based polymer nanocomposites as barrier coatings for corrosion protection, Progress in Organic Coatings, 135, 82 (2019). Doi: https://doi.org/10.1016/j.porgcoat.2019.05.030   DOI
25 S. Zheng, D. A. B.-Aguilar, J. Hu, Y. Huang, X. Zhao, Z. Wang, X. Zeng, Q. Zhang, Z. Chen, Waterborne biobased epoxy coatings for the corrosion protection of metallic substrates, Progress in Organic Coatings, 136, 105265 (2019). Doi: https://doi.org/10.1016/j.porgcoat.2019.105265   DOI
26 B. Hou, The cost of corrosion in China, Springer, Singapore (2019). Doi: https://doi.org/10.1007/978-981-32-9354-0   DOI
27 K. P. Balan, Corrosion, Metallurgical Failure Analysis, pp. 155 - 178, Elsevier (2018). Doi: htts://doi.org/10.1016/B978-0-12-814336-0.00009-3   DOI
28 S. Harsimran, K. Santosh, and K. Rakesh, Overview of Corrosion and Its Control: a Critical Review, Proceedings on Engineering Sciences, 3, 13 (2021). Doi: https://doi.org.10.24874/pes03.01.002   DOI
29 R. G. Kelly and J. S. Lee, Localized corrosion: Crevice corrosion, Encyclopedia of Interfacial Chemistry, pp. 291 - 301, Elsevier (2018). Doi: https://doi.org/10.1016/B978-0-12-409547-2.13420-1   DOI
30 K. V. Akpanyung and R. T. Loto, Pitting corrosion evaluation: A review, Journal of Physics: Conferences Series, 1378, 022088 (2019). Doi: https://dor.org/10.1088/1742-6596/1378/2/022088   DOI
31 R. Asmatulu, Nanocoatings for corrosion protection of aerospace alloys, Corrosion Protection and Control Using Nanomaterials, pp. 357 - 374, Woodhead Publishing Limited (2012). Doi: https://doi.org/10.1533/9780857095800.2.357   DOI
32 K. Esfandiari, M. Banihashemi, and P. Soleimani, Influence of impressed current cathodic protection systems on chemical characteristics of underground water, Water Environment Research, 92, 2105 (2020), Doi: https://doi.org/10.1002/wer.1371   DOI
33 U. Eduok, E. Ohaeri, and J. Szpunar, Self-healing composite coatings with protective and anticorrosion potentials: Classification by healing mechanism, Self-Healing Composite Materials, pp. 123 - 162, Elsevier Inc. (2019). Doi: https://doi.org/10.1016/B978-0-12-817354-1.00008-9   DOI
34 I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Physical metallurgy of aluminium alloys, Light Alloys (Fifth Edition), pp. 31 - 107 (1991). Doi: http://doi.org/10.1016/b978-0-08-099431-4.00002-6   DOI
35 P. Maass, Corrosion and Corrosion Protection, Handb Hot-Dip Galvaniz., pp. 1 - 19 (2011). Doi: https://doi.org/10.1002/9783527636884.ch1   DOI
36 F. Deflorian and M. Fedel, UV-curable organic polymer coatings for corrosion protection of steel, Handbook of Smart Coatings for Materials Protection, pp. 530 - 559 (2014). Doi: https://doi.org/10.1533/9780857096883.3.530   DOI
37 S. V. Gujjar, N. Nadar, K. Choudhary, A. M. Hunashyal, K. Shahapurka, M. A. Mujtaba, M. Asadullah, M. E. M. Soudagar, T. M. Y. Khan, K. A. Ismail, and A. Elfasakany, Investigation of Various Coating Resins for Optimal Anticorrosion and Mechanical Properties of Mild Steel Surface in NaCl Solution, Advances in Materials Science and Engineering, Article ID 2203717 (2022). Doi: https://doi.org/10.1155/2022/2203717   DOI
38 S. O. Pehkonen and S. Yuan, Introduction and Background, Interface Science and Technology, 23, 1 (2018). Doi: https://doi.org/10.1016/B978-0-12-813584-6.00001-6   DOI
39 L. Cao, X. Liu, H. Na, Y. Wu, W. Zheng, and J. Zhu, How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites, Journal of Materials Chemistry A, 1, 5081 (2013). Doi: https://doi.org/10.1039/c3ta01700a   DOI
40 X. Wang, W. Xing, P. Zhang, L. Song, H. Yang, and Y. Hu, Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites, Composites Science and Technology, 72, 737 (2012). Doi: https://doi.org/10.1016/j.compscitech.2012.01.027   DOI
41 S. Pourhashem, M. R. Vaezi, A. Rashidi, and M. R. Bagherzadeh, Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel, Corrosion Science, 115, 78 (2017). Doi: https://doi.org/10.1016/j.corsci.2016.11.008   DOI
42 R. Landolfo, L. Cascini, and F. Portioli, Modeling of metal structure corrosion damage: A state of the art report, Sustainability, 2, 2163 (2010). Doi: https://doi.org/10.3390/su2072163   DOI
43 S. Pourhashem, M. R. Vaezi, A. Rashidi, and M. R. Bagherzadeh, Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings, Progress in Organic Coatings, 111, 47 (2017). Doi: https://doi.org/10.1016/j.porgcoat.2017.05.008   DOI
44 R. Ding, W. Li, X. Wang, T. Gui, B. Li, P. Han, H. Tian, A. Liu, X. Wang, X. Liu, X. Gao, W. Wang, L. Song, A brief review of corrosion protective films and coatings based on graphene and graphene oxide, Journal of Alloys and Compounds, 764, 1039 (2018). Doi: https://doi.org/10.1016/j.jallcom.2018.06.133   DOI
45 S. Liu, L. Gu, H. Zhao, J. Chen, and H. Yu, Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings, Journal of Materials Science & Technology, 32, 425 (2016). Doi: https://doi.org/10.1016/j.jmst.2015.12.017   DOI
46 V. Berry, Impermeability of graphene and its applications, Carbon, 62, 1 (2013). Doi: https://doi.org/10.1016/j.carbon.2013.05.052   DOI
47 J. U. Lee, D. Yoon, and H. Cheong, Estimation of young's modulus of graphene by Raman spectroscopy, Nano Letters, 12, 4444 (2012). Doi: https://doi.org/10.1021/nl301073q   DOI
48 S. K. Tiwari, V. Kumar, A. Huczko, R. Oraon, A. De Adhikari, and G. C. Nayak, Magical Allotropes of Carbon: Prospects and Applications, Critical Reviews in Solid State and Materials Sciences, 41, 257 (2016). Doi: https://doi.org/10.1080/10408436.2015.1127206   DOI
49 K. Rajitha and K. N. Mohana, Application of modified graphene oxide - Polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium, Materials Chemistry and Physics, 241, 122050 (2020). Doi: https://doi.org/10.1016/j.matchemphys.2019.122050   DOI
50 S. R. Nayak and K. N. S. Mohana, Corrosion protection performance of functionalized graphene oxide nanocomposite coating on mild steel, Surfaces and Interfaces, 11, 63 (2018). Doi: https://doi.org/10.1016/j.surfin.2018.03.002   DOI
51 L. Z. Guan, Y. J. Wan, L. Gong, D. Yan, L. C. Tang, L. B. Wu, J. X. Jiang, and G. Q. Lai, Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide, Journal of Materials Chemistry A, 2, 15058 (2014). Doi: https://doi.org/10.1039/c4ta02429j   DOI
52 A. S. H. Makhlouf, V. Herrera, and E. Munoz, Corrosion and protection of the metallic structures in the petroleum industry due to corrosion and the techniques for protection. Elsevier Ltd (2018). Doi: https://doi.org/10.1016/b978-0-08-101928-3.00006-9   DOI
53 Y. Hou, D. Lei, S. Li, W. Yang, and C. Q. Li, Experimental Investigation on Corrosion Effect on Mechanical Properties of Buried Metal Pipes, International Journal of Corrosion, 2016, Article ID 5808372 (2016). Doi: https://doi.org/10.1155/2016/5808372   DOI
54 A. S. Hamdy Makhlouf, Intelligent Stannate-Based Coatings of Self-Healing Functionality for Magnesium Alloys, Intelligent Coatings for Corrosion Control, pp. 537 - 555, Elsevier Inc. (2015). Doi: https://doi.org/10.1016/B978-0-12-411467-8.00015-5   DOI
55 K. J. Bundy, Biomaterials and the chemical environment of the body. Woodhead Publishing Limited, (2008). Doi: https://doi.org/10.1533/9781845694807.1.56   DOI
56 F. L. Jin, X. Li, and S. J. Park, Synthesis and application of epoxy resins: A review, Journal of Industrial and Engineering Chemistry, 29, 1 (2015). Doi: https://doi.org/10.1016/j.jiec.2015.03.026   DOI
57 S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotechnology, 4, 217(2009). Doi: https://doi.org/10.1038/nnano.2009.58   DOI
58 L. Veleva, Anti-Corrosion Pigments, no. January 2012(2014).
59 V. Dehan, E. Bourgeat-Lami, F. d'Agosto, B. Duffy, A. Fortini, S. Hilton, K. Krassa, J. Keddie, M. L. Koh, M. Lansalot, M. Lee, J. L. de L. Haye, I. Maartin-Fabiani, C. Mantzaridis, D. Mazeffa, R. Sear, M. Schulz, M. Sibbald, B. Skerry, B. Thomas, High-performance waterbased barrier coatings for the corrosion protection of structural steel, Steel Construction, 10, 254 (2017). Doi: https://doi.org/10.1002/stco.201710034   DOI
60 S. Khodakarami, H. Zhao, K. F. Rabbi, and N. Miljkovic, Scalable corrosion-resistant coatings for thermal applications, ACS Applied Materials Interfaces, 13, 4519 (2021). Doi: https://doi.org/10.1021/acsami.0c19683   DOI
61 S. Yang, X. Feng, and K. Mullen, Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage, Advanced Materials, 23, 3575(2011). Doi: https://doi.org/10.1002/adma.201101599   DOI
62 Y. Wang, W. Liu, Y. Qiu, and Y. Wei, A one-component, fast-cure, and economical epoxy resin system suitable for liquid molding of automotive composite parts, Materials (Basel), 11, 685 (2018). Doi: http://doi.org/10.3390/ma11050685   DOI
63 Y. Xie et al., A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings, Colloids Surfaces A: Physicochemical and Engineering Aspects, 593, 124627 (2020). Doi: https://doi.org/10.1016/j.colsurfa.2020.124627   DOI
64 F. Schwierz, Graphene transistors, Nature Nanotechnology, 5, 487 (2010). Doi: https://doi.org/10.1038/nnano.2010.89   DOI
65 J. Liu, X. Fang, C. Zhu, X. Xing, G. Cui, and Z. Li, Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review, Colloids Surfaces A Physicochemical and Engineering Aspects, 607, 125498 (2020). Doi: https://doi.org/10.1016/j.colsurfa.2020.125498   DOI
66 Z. Ahmad, Types of Corrosion: Materials and Environments, Principles of Corrosion Engineering and Corrosion Control, pp. 120-270 (2006).
67 S. Virtanen, Electrochemical Theory | Corrosion, Encyclopedia of Electrochemical Power Sources, pp. 56 - 63, (2009). Doi: https://doi.org/10.1016/B978-044452745-5.00026-5   DOI
68 I. Choi, D. Lee, and D. G. Lee, Hybrid composite lowobservable radome composed of E-glass/aramid/epoxy composite sandwich construction and frequency selective surface, Composite Structures, 117, 98 (2014). Doi: http://doi.org/10.1016/j.compstruct.2014.06.031   DOI
69 P. Jojibabu, Y. X. Zhang, and B. G. Prusty, A review of research advances in epoxy-based nanocomposites as adhesive materials, International Journal of Adhesion and Adhesives, 96, 102454 (2020). Doi: https://doi.org/10.1016/j.ijadhadh.2019.102454   DOI
70 A. Rudawska, Mechanical Properties of Selected Epoxy Adhesive and Adhesive Joints of Steel Sheets, Applied Mechanics, 2, 108 (2021). Doi: https://doi.org/10.3390/applmech2010007   DOI
71 H. Jang, J. H. Kim, H. Kang, D. Bae, H. Chang, and H. Choi, "Reduced graphene oxide as a protection layer for Al, Applied Surface Science, 407, 1 (2017) Doi: https://doi.org/10.1016/j.apsusc.2017.02.041   DOI
72 M. Natesan and N. Palaniswamy, Atmospheric corrosivity and durability maps of india, Corrosion Reviews, 27, 61 (2009). Doi: https://doi.org/10.1515/CORRREV.2009.27.S1.61   DOI
73 R. Zhang, G. Cui, X. Su, X. Yu, and Z. Li, A novel functionally graded Ni-graphene coating and its corrosion resistance, Journal of Alloys and Compounds, 829, 154495 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.154495   DOI
74 Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. Lv. X. Ran, Y. Pan, Z. Luo, Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings, Surface Coatings Technology, 276, 471 (2015). Doi: https://doi.org/10.1016/j.surfcoat.2015.06.027   DOI
75 C. Wei, G. Wang, M. Cridland, D. L. Olson, and S. Liu, Corrosion protection of ships, Handbook of Environmental Degradation of Materials, 3rd ed., Elsevier Inc. (2018). Doi: https://doi.org/10.1016/B978-0-323-52472-8.00026-5   DOI
76 R. Singh, Chapter Eight-Coating for Corrosion Prevention, Corrosion Control for Offshore Structures, pp. 115 - 129 (2014). Doi: https://doi.org/10.1016/b978-0-12-404615-3.00008-5   DOI
77 A. A. Nazeer and M. Madkour, Potential use of smart coatings for corrosion protection of metals and alloys: A review, Journal of Molecular Liquids, 253, 11 (2018) Doi: https://doi.org/10.1016/j.molliq.2018.01.027   DOI
78 F. Zhong, Yi He, P. Wang, C. Chen, Y. Lin, Y. Wu, J. Chen, Self-assembled graphene oxide-graphene hybrids for enhancing the corrosion resistance of waterborne epoxy coating, Applied Surface Science, 488, 801 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.05.321   DOI
79 S. Pourhashem, E. Ghasemy, A. Rashidi, and M. R. Vaezi, Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots, 731, 1112 (2018). Doi: https://doi.org/10.1016/j.jallcom.2017.10.150   DOI
80 W. Chang, P. Wang, Y. Zhao, C. Ren, B. N. Popov, and C. Li, Characterizing corrosion properties of graphene barrier layers deposited on polycrystalline metals, Surface Coatings Technology, 398, 126077 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.126077   DOI
81 W. Hou, Y. Gao, J. Wang, D. J. Blackwood, and S. Teo, Recent advances and future perspectives for graphene oxide reinforced epoxy resins, Materials Today Communications, 23, 100883 (2020). Doi: https://doi.org/10.1016/j.mtcomm.2019.100883   DOI
82 R. Hummers, W. S. Offeman and E., Preparation of Graphitic Oxide, Journal of the American Chemical Society, 208, 1937 (1957). https://pubs.acs.org/doi/pdf/10.1021/ja01539a017   DOI
83 J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, and M. Ye, Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets, Chemistry of Materials, 21, 3514 (2009). Doi: https://doi.org/10.1021/cm901247t   DOI
84 S. R. Nayak, K. N. Mohana, and M. B. Hegde, Anticorrosion performance of 4-fluoro phenol functionalized graphene oxide nanocomposite coating on mild steel, Journal of Fluorine Chemistry, 228, 109392 (2019). Doi: https://doi.org/10.1016/j.jfluchem.2019.109392   DOI
85 C. Wang, Y. Lan, W. Yu, X. Li, Y. Qian, and H. Liu, Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties, Applied Surface Science, 362, 11 (2016). Doi: https://doi.org/10.1016/j.apsusc.2015.11.201   DOI
86 T. Zhou, J. Zhang, J. Zhao, W. Qu, X. Li, S. Li, B. Xing, Y. Fu, In-situ grafted graphene oxide-based waterborne epoxy curing agent for reinforcement corrosion protection of waterborne epoxy coating, Surface and Coatings Technology, 412, 127043 (2021). Doi: https://doi.org/10.1016/j.surfcoat.2021.127043   DOI
87 S. Arora and C. Srivastava, Microstructure and corrosion properties of NiCo-graphene oxide composite coatings, Thin Solid Films, 677, 45 (2019). Doi: https://doi.org/10.1016/j.tsf.2019.03.011   DOI
88 S. Yang, S. Zhu, and R. Hong, Graphene oxide/polyaniline nanocomposites used in anticorrosive coatings for environmental protection, Coatings, 10, 1 (2020). Doi: https://doi.org/10.3390/coatings10121215   DOI
89 Y. Zhao, J. Ma, K. Chen, C. Zhang, C. Yao, S. Zuo, and Y. Kong, One-Pot Preparation of Graphene-Based Polyaniline Conductive Nanocomposites for Anticorrosion Coatings, Nano, 12, 1 (2017). Doi: https://doi.org/10.1142/S1793292017500564   DOI
90 Q. Zhu et al., Synergistic effect of polypyrrole functionalized graphene oxide and zinc phosphate for enhanced anticorrosion performance of epoxy coatings, Composites Part A: Applied Science and Manufacturing, 130, 105752 (2020). Doi: https://doi.org/10.1016/j.compositesa.2019.105752   DOI
91 M. J. Nine, M. A. Cole, L. Johnson, D. N. H. Tran, and D. Losic, Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties, ACS Appl. Mater. Interfaces, 7, 28482 (2015). Doi: https://doi.org/10.1021/acsami.5b09611   DOI
92 M. A. Krishnan, K. S. Aneja, A. Shaikh, S. Bohm, K. Sarkar, H. L. M. Bohm, and V. S. Raja, Graphene-based anticorrosive coatings for copper, RSC Advances, 8, 499 (2018). Doi: https://doi.org/10.1039/c7ra10167h   DOI
93 V. Sharma, V. Sharma, M. S. Goyat, A. Hooda, J. K. Pandey, A. Kumar, R. Gupta, A. K. Upadhyay, R. Prakash, J. B. Kirabira, P. Mandal, P. K. Bhargav, Recent progress in nano-oxides and CNTs based corrosion resistant superhydrophobic coatings: A critical review, Progress in Organic Coatings, 140, 105512 (2020). Doi: https://doi.org/10.1016/j.porgcoat.2019.105512   DOI
94 G. Christopher, M. Anbu Kulandainathan, and G. Harichandran, "Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites, Progress in Organic Coatings, 89, 199 (2015). Doi: https://doi.org/10.1016/j.porgcoat.2015.09.022   DOI
95 L. Romo, R. Cruz-Silva, S. Sepulveda-Guzman, C. Menchaca-Campos, and J. Uruchurtu Chavarin, The Effect of a Chemically Modified Graphene in Water Based Corrosion Coating, ECS Transactions, 36, 111 (2011). Doi: https://doi.org/10.1149/1.3660604   DOI
96 S. Son, Y. Cho, H.-K. Hong, J. Lee, J. H. Kim, K. Kim, Y. Lee, A. Yoon, H.-J. Shin, and Z. Lee, Spontaneous Formation of a ZnO Monolayer by the Redox Reaction of Zn on Graphene Oxide, ACS Applied Materials & Interfaces, 12, 54222 (2020). Doi: https://doi.org/10.1021/acsami.0c18291   DOI
97 Y. Ma, Y. Ye, H. Wan, L. Chen, H. Zhou, and J. Chen, Chemical modification of graphene oxide to reinforce the corrosion protection performance of UV-curable polyurethane acrylate coating, Progress in Organic Coatings, 141, 105547 (2020). Doi: https://doi.org/10.1016/j.porgcoat.2020.105547   DOI
98 M. R. Bagherzadeh, A. Daneshvar, and H. Shariatpanahi, Novel water-based nanosiloxane epoxy coating for corrosion protection of carbon steel, Surface and Coatings Technology, 206, 2057 (2012). Doi: https://doi.org/10.1016/j.surfcoat.2011.05.036   DOI
99 Y. Wu, S. Wen, J. Wang, G. Wang, and K. Sun, Graphene oxide-loaded zinc phosphate as an anticorrosive reinforcement in waterborne polyurethane resin, International Journal of Electrochemical Science, 14, 5271 (2016). Doi: https://doi.org/10.20964/2019.06.12   DOI
100 M. Rajabi, G. R. Rashed, and D. Zaarei, Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel, Corrosion Engineering Science and Technology, 50, 509 (2015). Doi: https://doi.org/10.1179/1743278214Y.0000000232   DOI
101 C. Peng et al., Bulk functionalization of graphene using diazonium compounds and amide reaction, Applied Surface Science, 280, 914 (2013). Doi: https://doi.org/10.1016/j.apsusc.2013.05.094   DOI
102 R. Maurya, A. R. Siddiqui, P. K. Katiyar, and K. Bal-ani, Mechanical, tribological and anti-corrosive properties of polyaniline/graphene coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys, Journal of Materirals Science & Technology, 35, 1767 (2019). Doi: https://doi.org/10.1016/j.jmst.2019.03.028   DOI
103 P. A. Okafor, J. Singh-Beemat, and J. O. Iroh, Thermomechanical and corrosion inhibition properties of graphene/epoxy ester-siloxane-urea hybrid polymer nanocomposites, Progress in Organic Coatings, 88, 237 (2015). Doi: https://doi.org/10.1016/j.porgcoat.2015.07.005   DOI
104 S. Chatterjee, J. W. Wang, W. S. Kuo, N. H. Tai, C. Salzmann, W. L. Li, R. Hollertz, F. A. Nuesch, B. T. T. Chu, Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites, Chemical Physics Letters, 531, 6 (2012). Doi: https://doi.org/10.1016/j.cplett.2012.02.006   DOI