DOI QR코드

DOI QR Code

A State-of-the-Art Review of Graphene-Based Corrosion Resistant Coatings for Metal Protection

  • Zade, Ganesh S. (School of Chemical Engineering, Dr. Vishwanath Karad MIT World Peace University) ;
  • Patil, Kiran D. (School of Chemical Engineering, Dr. Vishwanath Karad MIT World Peace University)
  • Received : 2022.07.15
  • Accepted : 2022.07.29
  • Published : 2022.11.02

Abstract

Any design engineer or coating formulator's primary objective is to protect metals. Large investments in terms of money, time, labour, and other resources are necessary for constructing large-scale machinery and structures. In terms of economy, the structure's lifespan should be as long as feasible to create revenue. It is becoming essential to protect metal substrates from corrosion to prolong the lifespan of such huge structures. One of the most exciting, durable, useful, and effective methods to protect metals from corrosion is the application of corrosion-resistant coating. Graphene is a novel material with a wide range of applications because of its extraordinary features. The use of graphene in coating creates an obstacle and complicates the path for corrosive medium to reach the metal. As the path to the metal elongates, the corrosion medium takes longer to reach the metal. Thus, metal corrosion can be avoided. In this paper, the importance of graphene in coating formulation is discussed, including chemical modifications of graphene, the effect of graphene concentration on corrosion inhibition, and the contact angle of coating. This review also highlights the significance of water-based corrosion-resistant coating for preventing environmental damage.

Keywords

Acknowledgement

The authors would like to thank MIT World Peace University for their support and for providing the necessary facilities to carry out this research.

References

  1. Y. Hou, D. Lei, S. Li, W. Yang, and C. Q. Li, Experimental Investigation on Corrosion Effect on Mechanical Properties of Buried Metal Pipes, International Journal of Corrosion, 2016, Article ID 5808372 (2016). Doi: https://doi.org/10.1155/2016/5808372
  2. B. Hou, The cost of corrosion in China, Springer, Singapore (2019). Doi: https://doi.org/10.1007/978-981-32-9354-0
  3. A. Kadhim, A. A. Al-Amiery, R. Alazawi, M. K. S. AlGhezi, and R. H. Abass, Corrosion inhibitors. A review, International Journal of Corrosion and Scale Inhibition, 10, 54 (2021). Doi: https://doi.org/10.17675/2305-6894-2021-10-1-3
  4. K. P. Balan, Corrosion, Metallurgical Failure Analysis, pp. 155 - 178, Elsevier (2018). Doi: htts://doi.org/10.1016/B978-0-12-814336-0.00009-3
  5. S. Harsimran, K. Santosh, and K. Rakesh, Overview of Corrosion and Its Control: a Critical Review, Proceedings on Engineering Sciences, 3, 13 (2021). Doi: https://doi.org.10.24874/pes03.01.002
  6. C. Vargel, Uniform corrosion, Corrosion of Aluminium, 2nd, pp. 159 - 162 (2020). Doi: https://doi.org/10.1016/b978-0-08-099925-8.00013-2
  7. R. G. Kelly and J. S. Lee, Localized corrosion: Crevice corrosion, Encyclopedia of Interfacial Chemistry, pp. 291 - 301, Elsevier (2018). Doi: https://doi.org/10.1016/B978-0-12-409547-2.13420-1
  8. A. S. Hamdy Makhlouf, Intelligent Stannate-Based Coatings of Self-Healing Functionality for Magnesium Alloys, Intelligent Coatings for Corrosion Control, pp. 537 - 555, Elsevier Inc. (2015). Doi: https://doi.org/10.1016/B978-0-12-411467-8.00015-5
  9. K. V. Akpanyung and R. T. Loto, Pitting corrosion evaluation: A review, Journal of Physics: Conferences Series, 1378, 022088 (2019). Doi: https://dor.org/10.1088/1742-6596/1378/2/022088
  10. K. J. Bundy, Biomaterials and the chemical environment of the body. Woodhead Publishing Limited, (2008). Doi: https://doi.org/10.1533/9781845694807.1.56
  11. A. S. H. Makhlouf, V. Herrera, and E. Munoz, Corrosion and protection of the metallic structures in the petroleum industry due to corrosion and the techniques for protection. Elsevier Ltd (2018). Doi: https://doi.org/10.1016/b978-0-08-101928-3.00006-9
  12. R. Landolfo, L. Cascini, and F. Portioli, Modeling of metal structure corrosion damage: A state of the art report, Sustainability, 2, 2163 (2010). Doi: https://doi.org/10.3390/su2072163
  13. Z. Ahmad, Types of Corrosion: Materials and Environments, Principles of Corrosion Engineering and Corrosion Control, pp. 120-270 (2006).
  14. S. Virtanen, Electrochemical Theory | Corrosion, Encyclopedia of Electrochemical Power Sources, pp. 56 - 63, (2009). Doi: https://doi.org/10.1016/B978-044452745-5.00026-5
  15. K. Esfandiari, M. Banihashemi, and P. Soleimani, Influence of impressed current cathodic protection systems on chemical characteristics of underground water, Water Environment Research, 92, 2105 (2020), Doi: https://doi.org/10.1002/wer.1371
  16. S. V. Gujjar, N. Nadar, K. Choudhary, A. M. Hunashyal, K. Shahapurka, M. A. Mujtaba, M. Asadullah, M. E. M. Soudagar, T. M. Y. Khan, K. A. Ismail, and A. Elfasakany, Investigation of Various Coating Resins for Optimal Anticorrosion and Mechanical Properties of Mild Steel Surface in NaCl Solution, Advances in Materials Science and Engineering, Article ID 2203717 (2022). Doi: https://doi.org/10.1155/2022/2203717
  17. M. Natesan and N. Palaniswamy, Atmospheric corrosivity and durability maps of india, Corrosion Reviews, 27, 61 (2009). Doi: https://doi.org/10.1515/CORRREV.2009.27.S1.61
  18. S. O. Pehkonen and S. Yuan, Introduction and Background, Interface Science and Technology, 23, 1 (2018). Doi: https://doi.org/10.1016/B978-0-12-813584-6.00001-6
  19. U. Eduok, E. Ohaeri, and J. Szpunar, Self-healing composite coatings with protective and anticorrosion potentials: Classification by healing mechanism, Self-Healing Composite Materials, pp. 123 - 162, Elsevier Inc. (2019). Doi: https://doi.org/10.1016/B978-0-12-817354-1.00008-9
  20. C. Wei, G. Wang, M. Cridland, D. L. Olson, and S. Liu, Corrosion protection of ships, Handbook of Environmental Degradation of Materials, 3rd ed., Elsevier Inc. (2018). Doi: https://doi.org/10.1016/B978-0-323-52472-8.00026-5
  21. I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Physical metallurgy of aluminium alloys, Light Alloys (Fifth Edition), pp. 31 - 107 (1991). Doi: http://doi.org/10.1016/b978-0-08-099431-4.00002-6
  22. R. Asmatulu, Nanocoatings for corrosion protection of aerospace alloys, Corrosion Protection and Control Using Nanomaterials, pp. 357 - 374, Woodhead Publishing Limited (2012). Doi: https://doi.org/10.1533/9780857095800.2.357
  23. R. Singh, Chapter Eight-Coating for Corrosion Prevention, Corrosion Control for Offshore Structures, pp. 115 - 129 (2014). Doi: https://doi.org/10.1016/b978-0-12-404615-3.00008-5
  24. P. Maass, Corrosion and Corrosion Protection, Handb Hot-Dip Galvaniz., pp. 1 - 19 (2011). Doi: https://doi.org/10.1002/9783527636884.ch1
  25. F. Deflorian and M. Fedel, UV-curable organic polymer coatings for corrosion protection of steel, Handbook of Smart Coatings for Materials Protection, pp. 530 - 559 (2014). Doi: https://doi.org/10.1533/9780857096883.3.530
  26. A. A. Nazeer and M. Madkour, Potential use of smart coatings for corrosion protection of metals and alloys: A review, Journal of Molecular Liquids, 253, 11 (2018) Doi: https://doi.org/10.1016/j.molliq.2018.01.027
  27. L. Veleva, Anti-Corrosion Pigments, no. January 2012(2014).
  28. I. Press, Recent advances in epoxy coatings for corrosion protection of steel?: Experimental and modelling approach - A review, no. May (2022).
  29. V. Dehan, E. Bourgeat-Lami, F. d'Agosto, B. Duffy, A. Fortini, S. Hilton, K. Krassa, J. Keddie, M. L. Koh, M. Lansalot, M. Lee, J. L. de L. Haye, I. Maartin-Fabiani, C. Mantzaridis, D. Mazeffa, R. Sear, M. Schulz, M. Sibbald, B. Skerry, B. Thomas, High-performance waterbased barrier coatings for the corrosion protection of structural steel, Steel Construction, 10, 254 (2017). Doi: https://doi.org/10.1002/stco.201710034
  30. S. Khodakarami, H. Zhao, K. F. Rabbi, and N. Miljkovic, Scalable corrosion-resistant coatings for thermal applications, ACS Applied Materials Interfaces, 13, 4519 (2021). Doi: https://doi.org/10.1021/acsami.0c19683
  31. A. A. Farag, Applications of nanomaterials in corrosion protection coatings and inhibitors, Corrosion Reviews, pp. 1 - 20 (2020). Doi: https://doi.org/10.1515/corrrev2019-0011
  32. F. L. Jin, X. Li, and S. J. Park, Synthesis and application of epoxy resins: A review, Journal of Industrial and Engineering Chemistry, 29, 1 (2015). Doi: https://doi.org/10.1016/j.jiec.2015.03.026
  33. Y. Xie et al., A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings, Colloids Surfaces A: Physicochemical and Engineering Aspects, 593, 124627 (2020). Doi: https://doi.org/10.1016/j.colsurfa.2020.124627
  34. L. Guadagno, M. Raimondo, V. Vittoria, L. Vertuccio, C. Naddeo, S. Russo, B. de Vivo, P. Lamberti, G. Spinelli, and V. Tucci, Development of epoxy mixtures for application in aeronautics and aerospace, RSC Advances, 4, 15474 (2014). Doi: https://doi.org/10.1039/c3ra48031c
  35. Y. Wang, W. Liu, Y. Qiu, and Y. Wei, A one-component, fast-cure, and economical epoxy resin system suitable for liquid molding of automotive composite parts, Materials (Basel), 11, 685 (2018). Doi: http://doi.org/10.3390/ma11050685
  36. I. Choi, D. Lee, and D. G. Lee, Hybrid composite lowobservable radome composed of E-glass/aramid/epoxy composite sandwich construction and frequency selective surface, Composite Structures, 117, 98 (2014). Doi: http://doi.org/10.1016/j.compstruct.2014.06.031
  37. X. Zeng, L. Ye, K. Guo, R. Sun, J. Xu, and C. P. Wong, Fibrous Epoxy Substrate with High Thermal Conductivity and Low Dielectric Property for Flexible Electronics, Advanced Electronic Materials, 2, 1 (2016). Doi: http://doi.org/10.1002/aelm.201500485
  38. P. Jojibabu, Y. X. Zhang, and B. G. Prusty, A review of research advances in epoxy-based nanocomposites as adhesive materials, International Journal of Adhesion and Adhesives, 96, 102454 (2020). Doi: https://doi.org/10.1016/j.ijadhadh.2019.102454
  39. A. Rudawska, Mechanical Properties of Selected Epoxy Adhesive and Adhesive Joints of Steel Sheets, Applied Mechanics, 2, 108 (2021). Doi: https://doi.org/10.3390/applmech2010007
  40. M. R. Bagherzadeh, A. Daneshvar, and H. Shariatpanahi, Novel water-based nanosiloxane epoxy coating for corrosion protection of carbon steel, Surface and Coatings Technology, 206, 2057 (2012). Doi: https://doi.org/10.1016/j.surfcoat.2011.05.036
  41. J. Liu, X. Fang, C. Zhu, X. Xing, G. Cui, and Z. Li, Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review, Colloids Surfaces A Physicochemical and Engineering Aspects, 607, 125498 (2020). Doi: https://doi.org/10.1016/j.colsurfa.2020.125498
  42. V. Sharma, V. Sharma, M. S. Goyat, A. Hooda, J. K. Pandey, A. Kumar, R. Gupta, A. K. Upadhyay, R. Prakash, J. B. Kirabira, P. Mandal, P. K. Bhargav, Recent progress in nano-oxides and CNTs based corrosion resistant superhydrophobic coatings: A critical review, Progress in Organic Coatings, 140, 105512 (2020). Doi: https://doi.org/10.1016/j.porgcoat.2019.105512
  43. M. Mattone, S. Rescic, F. Fratini, and R. M. Del Fa, Experimentation of Earth-Gypsum Plasters for the Conservation of Earthen Constructions, International Journal of Architectural Heritage, 11, 763 (2017). Doi: https://doi.org/10.1080/15583058.2017.1290850
  44. S. Ding, T. Xiang, C. Li, S. Zheng, J. Wang, M. Zhang, C. Dong, W. Chan, Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel, Materials & Design, 117, 280 (2017). Doi: https://doi.org/10.1016/j.matdes.2016.12.084
  45. N. H. Othman, M. Che Ismail, M. Mustapha, N. Sallih, K. E. Kee, and R. Ahmad Jaal, Graphene-based polymer nanocomposites as barrier coatings for corrosion protection, Progress in Organic Coatings, 135, 82 (2019). Doi: https://doi.org/10.1016/j.porgcoat.2019.05.030
  46. S. Zheng, D. A. B.-Aguilar, J. Hu, Y. Huang, X. Zhao, Z. Wang, X. Zeng, Q. Zhang, Z. Chen, Waterborne biobased epoxy coatings for the corrosion protection of metallic substrates, Progress in Organic Coatings, 136, 105265 (2019). Doi: https://doi.org/10.1016/j.porgcoat.2019.105265
  47. J. P. S. Farinha, S. Picarra, C. Baleizao, and J. M. G. Martinho, Smart polymer nanoparticles for high-performance water-based coatings, Industrial Applications for Intelligent Polymers and Coatings, pp. 619 - 645 (2016). Doi: https://doi.org/10.1007/978-3-319-26893-4_29
  48. A. S. H. Makhlouf, Techniques for synthesizing and applying smart coatings for material protection, Handbook of Smart Coatings for Materials Protection, pp. 56 - 74, Woodhead (2014). Doi: https://doi.org/10.1533/9780857096883.1.56
  49. D. S. Chauhan, M. A. Quraishi, K. R. Ansari, and T. A. Saleh, Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario, Progress in Organic Coatings, 147, 105741 (2020). Doi: https://doi.org/10.1016/j.porgcoat.2020.105741
  50. S. K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, Graphene research and their outputs: Status and prospect, Journal of Science: Advanced Materials and Devices, 5, 10 (2020). Doi: https://doi.org/10.1016/j.jsamd.2020.01.006
  51. S. K. Tiwari, V. Kumar, A. Huczko, R. Oraon, A. De Adhikari, and G. C. Nayak, Magical Allotropes of Carbon: Prospects and Applications, Critical Reviews in Solid State and Materials Sciences, 41, 257 (2016). Doi: https://doi.org/10.1080/10408436.2015.1127206
  52. S. Liu, L. Gu, H. Zhao, J. Chen, and H. Yu, Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings, Journal of Materials Science & Technology, 32, 425 (2016). Doi: https://doi.org/10.1016/j.jmst.2015.12.017
  53. V. Berry, Impermeability of graphene and its applications, Carbon, 62, 1 (2013). Doi: https://doi.org/10.1016/j.carbon.2013.05.052
  54. J. U. Lee, D. Yoon, and H. Cheong, Estimation of young's modulus of graphene by Raman spectroscopy, Nano Letters, 12, 4444 (2012). Doi: https://doi.org/10.1021/nl301073q
  55. R. Ding, W. Li, X. Wang, T. Gui, B. Li, P. Han, H. Tian, A. Liu, X. Wang, X. Liu, X. Gao, W. Wang, L. Song, A brief review of corrosion protective films and coatings based on graphene and graphene oxide, Journal of Alloys and Compounds, 764, 1039 (2018). Doi: https://doi.org/10.1016/j.jallcom.2018.06.133
  56. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials, 10, 424 (2011). Doi: https://doi.org/10.1038/nmat3001
  57. S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nature Nanotechnology, 4, 217(2009). Doi: https://doi.org/10.1038/nnano.2009.58
  58. F. Schwierz, Graphene transistors, Nature Nanotechnology, 5, 487 (2010). Doi: https://doi.org/10.1038/nnano.2010.89
  59. S. Yang, X. Feng, and K. Mullen, Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage, Advanced Materials, 23, 3575(2011). Doi: https://doi.org/10.1002/adma.201101599
  60. W. Chang, P. Wang, Y. Zhao, C. Ren, B. N. Popov, and C. Li, Characterizing corrosion properties of graphene barrier layers deposited on polycrystalline metals, Surface Coatings Technology, 398, 126077 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2020.126077
  61. R. Zhang, G. Cui, X. Su, X. Yu, and Z. Li, A novel functionally graded Ni-graphene coating and its corrosion resistance, Journal of Alloys and Compounds, 829, 154495 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.154495
  62. F. Zhong, Yi He, P. Wang, C. Chen, Y. Lin, Y. Wu, J. Chen, Self-assembled graphene oxide-graphene hybrids for enhancing the corrosion resistance of waterborne epoxy coating, Applied Surface Science, 488, 801 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.05.321
  63. S. Pourhashem, E. Ghasemy, A. Rashidi, and M. R. Vaezi, Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots, 731, 1112 (2018). Doi: https://doi.org/10.1016/j.jallcom.2017.10.150
  64. R. R. Abakah, F. Huang, Q. Hu, Y. Wang, and L. Jing, Comparative study of corrosion properties of different graphene nanoplate/epoxy composite coatings for enhanced surface barrier protection, Coatings, 11, 1 (2021). Doi: https://doi.org/10.3390/coatings11030285
  65. S. K. Yadav and J. W. Cho, Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites, Applied Surface Science, 266, 360 (2013). Doi: https://doi.org/10.1016/j.apsusc.2012.12.028
  66. K. Rajitha, K. N. S. Mohana, A. Mohanan, and A. M. Madhusudhana, Evaluation of anti-corrosion performance of modified gelatin-graphene oxide nanocomposite dispersed in epoxy coating on mild steel in saline media, Colloids Surfaces A: Physicochemical and Engineering Aspects, 587, 124341 (2020). Doi: https://doi.org/10.1016/j.colsurfa.2019.124341
  67. H. Shi, W. Liu, Y. Xie, M. Yang, C. Liu, F. Zhang, S. Wang, L. Liang, K. Pi, Synthesis of carboxymethyl chitosan-functionalized graphene nanomaterial for anticorrosive reinforcement of waterborne epoxy coating, Carbohydrate Polymers, 252, 117249 (2021). Doi: https://doi.org/10.1016/j.carbpol.2020.117249
  68. X. Zhou, H. Huang, R. Zhu, X. Sheng, D. Xie, and Y. Mei, Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of waterborne epoxy coatings, Prog. Org. Coatings, 136, 105200 (2019). Doi: https://doi.org/10.1016/j.porgcoat.2019.06.046
  69. P. Wang and D. Cai, Preparation of Graphene-Modified Anticorrosion Coating and Study on Its Corrosion Resistance Mechanism, International Journal of Photoenergy, 2020, Article ID 8846644, Doi: https://doi.org/10.1155/2020/8846644
  70. B. Kuly, A critical review on the production and application of graphene and graphene-based materials in anticorrosion coatings, Critical Reviews in Solid State and Materials Sciences, 47, 309 (2022). Doi: https://doi.org/10.1080/10408436.2021.1886046
  71. H. Jang, J. H. Kim, H. Kang, D. Bae, H. Chang, and H. Choi, "Reduced graphene oxide as a protection layer for Al, Applied Surface Science, 407, 1 (2017) Doi: https://doi.org/10.1016/j.apsusc.2017.02.041
  72. W. Hou, Y. Gao, J. Wang, D. J. Blackwood, and S. Teo, Recent advances and future perspectives for graphene oxide reinforced epoxy resins, Materials Today Communications, 23, 100883 (2020). Doi: https://doi.org/10.1016/j.mtcomm.2019.100883
  73. R. Hummers, W. S. Offeman and E., Preparation of Graphitic Oxide, Journal of the American Chemical Society, 208, 1937 (1957). https://pubs.acs.org/doi/pdf/10.1021/ja01539a017
  74. C. Peng et al., Bulk functionalization of graphene using diazonium compounds and amide reaction, Applied Surface Science, 280, 914 (2013). Doi: https://doi.org/10.1016/j.apsusc.2013.05.094
  75. L. Romo, R. Cruz-Silva, S. Sepulveda-Guzman, C. Menchaca-Campos, and J. Uruchurtu Chavarin, The Effect of a Chemically Modified Graphene in Water Based Corrosion Coating, ECS Transactions, 36, 111 (2011). Doi: https://doi.org/10.1149/1.3660604
  76. S. Son, Y. Cho, H.-K. Hong, J. Lee, J. H. Kim, K. Kim, Y. Lee, A. Yoon, H.-J. Shin, and Z. Lee, Spontaneous Formation of a ZnO Monolayer by the Redox Reaction of Zn on Graphene Oxide, ACS Applied Materials & Interfaces, 12, 54222 (2020). Doi: https://doi.org/10.1021/acsami.0c18291
  77. M. Rajabi, G. R. Rashed, and D. Zaarei, Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel, Corrosion Engineering Science and Technology, 50, 509 (2015). Doi: https://doi.org/10.1179/1743278214Y.0000000232
  78. Y. Wu, S. Wen, J. Wang, G. Wang, and K. Sun, Graphene oxide-loaded zinc phosphate as an anticorrosive reinforcement in waterborne polyurethane resin, International Journal of Electrochemical Science, 14, 5271 (2016). Doi: https://doi.org/10.20964/2019.06.12
  79. Q. Zhu et al., Synergistic effect of polypyrrole functionalized graphene oxide and zinc phosphate for enhanced anticorrosion performance of epoxy coatings, Composites Part A: Applied Science and Manufacturing, 130, 105752 (2020). Doi: https://doi.org/10.1016/j.compositesa.2019.105752
  80. M. J. Nine, M. A. Cole, L. Johnson, D. N. H. Tran, and D. Losic, Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties, ACS Appl. Mater. Interfaces, 7, 28482 (2015). Doi: https://doi.org/10.1021/acsami.5b09611
  81. M. A. Krishnan, K. S. Aneja, A. Shaikh, S. Bohm, K. Sarkar, H. L. M. Bohm, and V. S. Raja, Graphene-based anticorrosive coatings for copper, RSC Advances, 8, 499 (2018). Doi: https://doi.org/10.1039/c7ra10167h
  82. Y. Ma, Y. Ye, H. Wan, L. Chen, H. Zhou, and J. Chen, Chemical modification of graphene oxide to reinforce the corrosion protection performance of UV-curable polyurethane acrylate coating, Progress in Organic Coatings, 141, 105547 (2020). Doi: https://doi.org/10.1016/j.porgcoat.2020.105547
  83. L. C. Tang et al., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites, Carbon, 60, 16 (2013). Doi: https://doi.org/10.1016/j.carbon.2013.03.050
  84. X. Wang, W. Xing, P. Zhang, L. Song, H. Yang, and Y. Hu, Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites, Composites Science and Technology, 72, 737 (2012). Doi: https://doi.org/10.1016/j.compscitech.2012.01.027
  85. L. Cao, X. Liu, H. Na, Y. Wu, W. Zheng, and J. Zhu, How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites, Journal of Materials Chemistry A, 1, 5081 (2013). Doi: https://doi.org/10.1039/c3ta01700a
  86. S. Pourhashem, M. R. Vaezi, A. Rashidi, and M. R. Bagherzadeh, Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel, Corrosion Science, 115, 78 (2017). Doi: https://doi.org/10.1016/j.corsci.2016.11.008
  87. L. Z. Guan, Y. J. Wan, L. Gong, D. Yan, L. C. Tang, L. B. Wu, J. X. Jiang, and G. Q. Lai, Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide, Journal of Materials Chemistry A, 2, 15058 (2014). Doi: https://doi.org/10.1039/c4ta02429j
  88. S. Pourhashem, M. R. Vaezi, A. Rashidi, and M. R. Bagherzadeh, Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings, Progress in Organic Coatings, 111, 47 (2017). Doi: https://doi.org/10.1016/j.porgcoat.2017.05.008
  89. S. R. Nayak and K. N. S. Mohana, Corrosion protection performance of functionalized graphene oxide nanocomposite coating on mild steel, Surfaces and Interfaces, 11, 63 (2018). Doi: https://doi.org/10.1016/j.surfin.2018.03.002
  90. Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. Lv. X. Ran, Y. Pan, Z. Luo, Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings, Surface Coatings Technology, 276, 471 (2015). Doi: https://doi.org/10.1016/j.surfcoat.2015.06.027
  91. K. Rajitha and K. N. Mohana, Application of modified graphene oxide - Polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium, Materials Chemistry and Physics, 241, 122050 (2020). Doi: https://doi.org/10.1016/j.matchemphys.2019.122050
  92. P. A. Okafor, J. Singh-Beemat, and J. O. Iroh, Thermomechanical and corrosion inhibition properties of graphene/epoxy ester-siloxane-urea hybrid polymer nanocomposites, Progress in Organic Coatings, 88, 237 (2015). Doi: https://doi.org/10.1016/j.porgcoat.2015.07.005
  93. G. Christopher, M. Anbu Kulandainathan, and G. Harichandran, "Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites, Progress in Organic Coatings, 89, 199 (2015). Doi: https://doi.org/10.1016/j.porgcoat.2015.09.022
  94. S. Chatterjee, J. W. Wang, W. S. Kuo, N. H. Tai, C. Salzmann, W. L. Li, R. Hollertz, F. A. Nuesch, B. T. T. Chu, Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites, Chemical Physics Letters, 531, 6 (2012). Doi: https://doi.org/10.1016/j.cplett.2012.02.006
  95. S. R. Nayak, K. N. Mohana, and M. B. Hegde, Anticorrosion performance of 4-fluoro phenol functionalized graphene oxide nanocomposite coating on mild steel, Journal of Fluorine Chemistry, 228, 109392 (2019). Doi: https://doi.org/10.1016/j.jfluchem.2019.109392
  96. S. Arora and C. Srivastava, Microstructure and corrosion properties of NiCo-graphene oxide composite coatings, Thin Solid Films, 677, 45 (2019). Doi: https://doi.org/10.1016/j.tsf.2019.03.011
  97. C. Wang, Y. Lan, W. Yu, X. Li, Y. Qian, and H. Liu, Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties, Applied Surface Science, 362, 11 (2016). Doi: https://doi.org/10.1016/j.apsusc.2015.11.201
  98. T. Zhou, J. Zhang, J. Zhao, W. Qu, X. Li, S. Li, B. Xing, Y. Fu, In-situ grafted graphene oxide-based waterborne epoxy curing agent for reinforcement corrosion protection of waterborne epoxy coating, Surface and Coatings Technology, 412, 127043 (2021). Doi: https://doi.org/10.1016/j.surfcoat.2021.127043
  99. S. Yang, S. Zhu, and R. Hong, Graphene oxide/polyaniline nanocomposites used in anticorrosive coatings for environmental protection, Coatings, 10, 1 (2020). Doi: https://doi.org/10.3390/coatings10121215
  100. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, and M. Ye, Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets, Chemistry of Materials, 21, 3514 (2009). Doi: https://doi.org/10.1021/cm901247t
  101. R. Maurya, A. R. Siddiqui, P. K. Katiyar, and K. Bal-ani, Mechanical, tribological and anti-corrosive properties of polyaniline/graphene coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys, Journal of Materirals Science & Technology, 35, 1767 (2019). Doi: https://doi.org/10.1016/j.jmst.2019.03.028
  102. Y. Zhao, J. Ma, K. Chen, C. Zhang, C. Yao, S. Zuo, and Y. Kong, One-Pot Preparation of Graphene-Based Polyaniline Conductive Nanocomposites for Anticorrosion Coatings, Nano, 12, 1 (2017). Doi: https://doi.org/10.1142/S1793292017500564
  103. S. Kim, T. Le, C. S. Park, G. Park, K. H. Kim, S. Kim, O. S. Kwon, G. T. Lim, and H. Yoon, A solution-processable, nanostructured, and conductive graphene/ polyaniline hybrid coating for metal-corrosion protection and monitoring, Scientific Reports, 7, 1 (2017). Doi: https://doi.org/10.1038/s41598-017-15552-w
  104. A. Mohammadzadeh, H. Ghafouri Taleghani, and M. S. Lashkenari, Preparation and comparative study of anticorrosion nanocomposites of polyaniline/graphene oxide/clay coating, Journal of Materials Research and Technology, 13, 2325 (2021). Doi: https://doi.org/10.1016/j.jmrt.2021.05.098