• 제목/요약/키워드: Durability testing

Search Result 303, Processing Time 0.024 seconds

A Review of Strategies to Improve the Stability of Carbon-supported PtNi Octahedral for Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells

  • In Gyeom Kim;Sung Jong Yoo;Jin Young Kim;Hyun S. Park;So Young Lee;Bora Seo;Kwan-Young Lee;Jong Hyun Jang;Hee-Young Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.96-110
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells (PEMFCs) are green energy conversion devices, for which commercial markets have been established, owing to their application in fuel cell vehicles (FCVs). Development of cathode electrocatalysts, replacing commercial Pt/C, plays a crucial role in factors such as cost reduction, high performance, and durability in FCVs. PtNi octahedral catalysts are promising for oxygen reduction reactions owing to their significantly higher mass activity (10-15 times) than that of Pt/C; however, their application in membrane electrode assemblies (MEAs) is challenged by their low stability. To overcome this durability issue, various approaches, such as third-metal doping, composition control, halide treatment, formation of a Pt layer, annealing treatment, and size control, have been explored and have shown promising improvements in stability in rotating disk electrode (RDE) testing. In this review, we aimed to compare the features of each strategy in terms of enhancing stability by introducing a stability improvement factor for a direct and reasonable comparison. The limitations of each strategy for enhancing stability of PtNi octahedral are also described. This review can serve as a valuable guide for the development of strategies to enhance the durability of octahedral PtNi.

A Study of Measuring Vibration for Reproducing Waterhammer of Plant Equipment (플랜트 기자재 수충격 진동재현을 위한 진동측정에 관한 연구)

  • OH, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.145-150
    • /
    • 2017
  • In this study, among the various types of plant equipment, valves, which are susceptible to water hammer, were selected as the diagnosis target. In order to effectively measure the vibration, an accelerometer was adapted for use in this difficult environment. The results showed that the maximum peak-to-peak vibration displacement caused by the action of water hammer on the valve was 21.40 mm, which would affect the structural stability of the valve and pipe. Meanwhile, the measured data was applied to the HIL simulator to verify the reproduction of the vibration. In the future, field data will be applied to the HIL simulator for the purpose of assessing the fatigue, durability and expected residual life of the plant equipment.

A Research on the Reverse Engineering and Verification for the Development of An Independent-Suspension Type Axle Through-Drive on Heavy Duty Special Vehicles (대형 특수차량용 독립현가형 액슬 스루드라이버 개발을 위한 역설계 및 설계검증 적용 연구)

  • Lee, Sung-Geun;Park, Jeong-Hyeon;Pyoun, Young-Sik;Park, Byeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2210-2220
    • /
    • 2009
  • Independent-suspension type axles for heavy duty special vehicles are usually produced by only a few specialized companies. The special techniques, such as designing, producing, testing techniques has been unveiled. The test of durability with the vehicle in which is installed a prototype taking several years is required for setting the designing parameters. In this research, through-drive the core-component of the independent-suspension type axle has been tested with the reverse engineering and the testing methods for the confirmation of the accomplishment in the development goal has been suggested. Also the prototype is developed from designing and testing the design with the CAD and CAE tools. As a result, the process and testing methods studied in this research are useful in the development of power train.

Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag (알칼리 활성 슬래그 기반 무시멘트 콘크리트의 장기 내구성 평가)

  • Lee, Hyun-Jin;Lee, Seok-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the long-term durability against chloride ion and sulfate attack of the alkali activated cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28, 91, 182, and 365 days, respectively. To evaluate the long-term durability to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete irrespective of water-binder ratio.

The Feasibility Study on a High-Temperature Application of the Magnetostrictive Transducer Employing a Thin Fe-Co Alloy Patch

  • Heo, Tae-Hoon;Park, Jae-Ha;Ahn, Bong-Young;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.278-286
    • /
    • 2011
  • The on-line monitoring for the wall thinning in secondary system has been considered one of main issues for the safety of nuclear power plants. To establish the on-line monitoring technique for the pipe wall thinning, the development of the ultrasonic transducer working in high-temperature is very important. In this investigation, the magnetostrictive transducer is concerned for high temperature condition up to $300^{\circ}C$. The magnetostrictive transducer has many advantages such as high working temperature, durability, cost-effectiveness, and shear waves, most of all. A thin Fe-Co alloy patch whose Curie temperature is over $900^{\circ}C$ was employed as a ferromagnetic material for magnetostriction. Wave transduction experiments in various temperature were carried out and the effect of bias magnets was considered together with the dry coupling performance of the transducer. From experimental results, consequently, it was found that the magnetostrictive transducer works stable even in high temperature up to $300^{\circ}C$ and can be a promising method for the on-line monitoring of the wall thinning in nuclear power plants.

Evaluation of the Acceleration-factor and Analysis of the Vibration Fatigue for the Connection-pipe to the Compressor under the Random Vibration (랜덤 진동 조건에서의 압축기 연결 파이프에 대한 가속 수명 팩터 선정 및 진동 피로 해석)

  • Han, Hyung-Suk;Jung, Woo-Seoung;Yoon, Kyung-Jong;Mo, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.323-334
    • /
    • 2008
  • According to the delivery condition, the breakage of a product occurs when it is delivered to the customers. Therefore product's makers evaluate the durability under the delivery process by accelerated life testing. In order to conduct this accelerated life testing accurately, it is very important to identify the acceleration-factor exactly between on-road and accelerated life test condition. In this paper, the acceleration-factor is identified by applying linear damage summation law, rain-flow cycle counting and Dirlik theory under the conditions of the random vibration. And approximated FEM model of the connecting-pipe to the compressor is developed for fatigue analysis. This model is finally verified by comparing the experiment results to the numerical analysis results.

The role of research in the creation of athletic footwear

  • Lafortune, Mario A.
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.407-415
    • /
    • 2002
  • Athletic products must meet the needs of athletes and the demands imposed by sports through innovative design. These needs of athletes and requirements of sports are performance, protection and comfort related. In depth knowledge of anatomy and physiology, etiology of commonly reported injuries, and lower extremity mechanics form the basis of product creation/engineering. Game analysis which entails time and frequency surveys of the skills performed during a game, interviews with athletes and coaches, and discussions with medical staffs are used to identify the skills that are critical to the needs of athletes. In lab full biomechanical analyses of these skills and/or physiological responses of the athletes lead to clear functional criterions that serve as guidelines to be met by the design team. The concepts created by the design team are in turns subjected to the same battery of biomechanical analyses. The learning gathered through this pluridisciplinary process is used to further evolve design concepts. The evolution-testing loop is repeated until biomechanical and/or physiological, mechanical and perceptual tests indicate that the design concept meets the established functional design criterions. At that time, the design concepts is ready for manufacturing research and development. Additional biomechanical and physical tests are performed through that phase to confirm that the manufacturing processes preserve the functionality of the design concept. Durability and long term performance of production samples are evaluated through a final three month long weartest program. A rigorous research/testing program is crucial to create and engineer sport products that meet the performance, protection.

Quality Assessment of Domestic Non-automatic Weighing Instruments for International Standards (국제표준에 대비한 국내 비자동저울의 품질평가에 관한 연구)

  • Namkoong Chai-Kwan;Kong Jae Hyang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.127-134
    • /
    • 2004
  • As the result of reduction of the barrier of national economy on matters of quality assurance of weighing instruments in recently, it is considering in domestic as well as international matters. Therefore, this study is to analysis and compare with international md national measuring standards on the electric self-indicating scale, to improve the quality of electronic machine by providing a reformation plan on currently problems of domestic manufactured, and to identify to introduce in domestic criteria from international standards. I had compared KSC 1313 to OIML R 76-1 as the performance assessment items, such as metrology Properties test, static temperature test, temperature effect testing under the un-load, electronic wave disturbance test, high-tempereature and high-humidity stability test and durability test. Therefore, only one company is passed all items of the test according to the international (reference) standards, but it is possible to improve the quality in general if it should be use the load cell and electric components which is stability of temperature change in order to supplementation to the static temperature test and temperature effect testing under the un-load. It is also possible to apply in the domestic with the OIML 76-1 after correcting the design.

Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement (보강용 지오신세틱스의 가속 인장 크리프 시험방법)

  • Koo, Hyun-Jin;Cho, Hang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF

Accelerated Ultrasonic Fatigue Testing Applications and Research Trends (초음파 가속피로시험 적용 사례 및 연구 동향)

  • Cho, In-Sik;Shin, Choong-Shig;Kim, Jong-Yup;Jeon, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.707-712
    • /
    • 2012
  • Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti-6Al-4V alloy. Hourglass-shaped specimens have been investigated in the range from $10^6$ to $10^9$ cycles at room temperature under completely reversed R = -1 loading conditions,. Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have beenfound to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.