• Title/Summary/Keyword: Durability of permeability

Search Result 338, Processing Time 0.025 seconds

An Experimental Study on the Erosion of a Compacted Calcium Bentonite Block (압축된 칼슘벤토나이트 블록의 침식에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.341-348
    • /
    • 2005
  • Bentonite has been considered as a candidate buffer material in the underground repository for the disposal of high-level radioactive waste because of its low permeability, high sorption capacity, self sealing characteristics, and durability in nature. In this study, the potential for separation of bentonite particles caused by the groundwater erosion was studied experimentally for a Korean Ca-bentonite under the relevant repository conditions. Results showed that bentonite particles can be generated at the bentonite/granite interface and mobilized by the water flow although the intrusion of bentonite into fracture by swelling pressure was observed to be small. Different processes of mobilization of theses colloids from the compacted bentonite block have been identified in this study. The concentration of particles eluted in water was increased as the flow rate increased. Thus the result reveals that the erosion of the bentonite surface due to the groundwater flow together with intrusion processes is the main mechanism that can mobilize bentonite colloids in the fracture of the granite.

  • PDF

An Experimental Study on the Fundamental Properties and Durability of Sewer Type Restorative Mortar Spread with Antibiotics (항균제를 도포한 하수시설용 단면복구 모르타르의 기초물성 및 내구특성에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Hwan;Cho, Bong-Suk;Lee, Dong-Heck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 2006
  • Deterioration of sewer concrete is representative that biochemical corrosion according to the $H_2S$ has growth by inhabit sulfur-oxidzing bacteria because of special environment in sewer. But in case of domestic, fundamentally, sulfur-oxidzing bacteria could moderate development of repair material method is need because of corrosion prevent method is inconsideration with carry out to improve project. In this paper, after development of spread type antibiotic with antibio-metal, antibacterial performance about sulfur-oxidzing bacteria of antibiotic and tested to estimate fundamental properties of bonding strength, abrasion contents, contents of water absorption, contents of air permeability, carbonation depth, chloride ion penetration depth and chemical resistance of spread with antibiotic restorative mortar.

Study on the Applicability of the Air Cushion Material for Impact Relief through Thermal Bonding of High Strength Fabrics (고강력 직물의 열융착 라미네이팅을 통한 충격 완화용 에어쿠션 소재로의 적용 가능성 검토 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.176-183
    • /
    • 2020
  • In order to study wearable air cushion materials capable of responding to massive impact in high-altitude fall situation, high tenacity woven fabrics were bonded by heat only depending on various type of thermoplastic films and then mechanical properties were measured. Tensile strength, elongation, and 100% modulus measurement results for 4 types of films show that TPU-2 has higher impact resistance and easier expansion than PET-1. After thermal bonding, the combination with the highest tensile strength was a material with a TPU-2 film for nylon and a PET-2 film for PET, so there was a difference by type of fabric. The tear strength of the bonded materials were increased compared to the fabric alone, which shows that durability against damage such as tearing can be obtained through film adhesion. All of the peel strengths exceeded the values required by automobile airbags by about 5 times, and the TPU-2 bonded fabric showed the highest value. The air permeability was 0 L/dm2 /min. For both the film and the bonded material, which means tightness between the fabric and the film through thermal bonding. It is expected to be applied as a wearable air cushion material by achieving a level of mechanical properties similar to or superior to that of automobile airbags through the method of bonding film and fabric by thermal bonding.

The Characteristics of Hydrogen Permeation through Pd-coated $Nb_{56}Ti_{23}Ni_{21}$ Alloy Membranes (Pd 코팅된 $Nb_{56}Ti_{23}Ni_{21}$ 합금 분리막의 수소투과 특성)

  • Jung, Yeong-Min;Jeon, Sung-Il;Park, Jung-Hoon
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • We make a studyof the hydrogen permeability and chemical stability of $Nb_{56}Ti_{23}Ni_{21}$ metal alloy membrane. For this purpose, we produced the $Nb_{56}Ti_{23}Ni_{21}$ membrane which has 10 mm diameter and 0.5 mm thick, and experiment the hydrogen transport properties under two kinds of feed gas ($H_2$ 100%; $H_2$ 60% + $CO_2$ 40%) at $450^{\circ}C$C with variation of absolute pressure.The maximum hydrogen permeation flux was $5.58mL/min/cm^2$ in the absolute pressure 3 bar under pure hydrogen. And each case of feed gases about gas composition, the permeation fluxes were satisfied with Sievert's law, and the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure. After permeation test, we experiment the stability and durability of $Nb_{56}Ti_{23}Ni_{21}$ alloy membrane for carbon dioxide by XRD analysis.

Comparison of Physical Properties of Permeability Concrete Using Acrylic Polymer (아크릴 폴리머를 사용한 투수 콘크리트의 물성 비교 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.265-271
    • /
    • 2019
  • The aim of this paper was to improve the shortcomings of Pitcher Concrete, a conventional ethylene-based polymer used in combination with the other components, and present basic data for use as improved road pavement material by applying an acrylic polymer. Existing ethylene polymer-based pitcher concrete materials were selected. Acrylic polymer was then added and the resulting mixture was evaluated. The compressive strength of the existing ethylene-based polymer pitcher concrete combination was low due to the large air gap, and a compressive strength of 24MPa was observed on the 28th day of road use, as defined by KS for an acrylic polymer-based pitcher concrete combination. Regarding the bending strength, the combined strength of the acrylic polymer-based pitcher concrete was excellent, and the factor of the pitcher was measured above the reference, 0.1(mm/s), in all variables. All parameters measured were less than 1%. The acrylic polymer mixing characteristics were able to maintain the dynamic modulus of elasticity for more than 120 cycles, but not more than 80 cycles for the other combinations. Therefore, the addition of more acrylic polymer than conventional ethylene polymer base is effective in improving the durability.

A Study on the high-flux MBR system using PTFE flat membrane and coagulant(Alum) for removal of phosphorus (PTFE재질의 평판형 분리막과 인제거를 위해 Alum주입을 적용한 고플럭스 MBR시스템에 관한 연구)

  • Lee, Eui-Jong;Kim, Kwan-Yeop;Kwon, Jin-Sub;Kim, Young-Hoon;Lee, Yong-Soo;Lee, Chang-Ha;Jeon, Min-Jung;Kim, Hyung-Soo;Kim, Jung-Rae;Jung, Jin-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.95-106
    • /
    • 2011
  • Even though MBR processes have many advantages such as high quality effluents, a small footprint and convenience for operation compared to conventional activated sludge processes, there are some shortcomings in terms of the cost and potential fouling incident that keeps MBR (Membrane bioreactor) processes from being widely applied. To reduce these problems, PTFE (Polytetrafluoroethylene) flat sheet membranes that have excellent permeability and durability were tested instead of PVDF (Polyvinylidene fluoride) membrane which is being used widely in water treatment. Low concentration of sodium hydroxide (NaOH) was also added into the membrane modules in order to prevent the membrane fouling as well as to provide the alkalinity. With conditions mentioned above, a pilot-scale MBR system based on the MLE (Modified Ludzack Ettinger) process was operated at flux of 40 $L/m^{2}/hr$ and over 15,000 mg/L MLSS concentration for about 8 months. And coagulant(alum) was added into the membrane tank to remove phosphorus. Although the more coagulant is added the more effectively phosphorus is removed, that can lead to fouling for a long operation(Ronseca et al.,2009). By the way there is a research that fouling grow up after stopping injection of coagulant(Holbrook, 2004). Stable operation of MBR systems was achieved without major chemical cleaning and the effluent quality was found to be good enough to comply with the treated waste water quality regulations of the Korea.

Fabrication of Organic Solvent Resistant Polyketone Hollow Fiber Membranes (유기용매 저항성 Polyketone 중공사 분리막의 제조)

  • Park, Yeji;Jang, Wongi;Choi, Jinwon;Woo, Yunha;Hou, Jian;Jeon, Sungil;Byun, Hongsik
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.363-370
    • /
    • 2021
  • Organic solvent resistant hollow fiber membranes were fabricated via a thermally induced phase separation (TIPS) method using Polyketone polymer, a material with excellent resistance to organic solvents. The PEG300, DMSO2 and Glycerine called the "green solvents" were used as diluents for TIPS method. The spherulite structure was formed with DMSO2 by S-L phase separation behavior whereas the bicontinuous structures were formed with PEG300 and Glycerine, respectively. The morphology of the PK hollow fiber membranes was investigated using SEM. The pure water permeability and the durability test were conducted to understand the permeation properties of PK hollow fiber membranes. The tensile strength test was conducted for the property of mechanical strength. In this study, the fabrication of PK hollow fiber membranes with various diluents was discussed to understand the correlation between diluent and polymer in detail.

A Study on Environmentally Friendly Soil Pavement Materials Using Weathered Soil and Inorganic Binder (화강풍화토와 무기질 결합재를 활용한 친환경 흙포장에 관한 연구)

  • Jung, Hyuksang;Jang, Cheolho;An, Byungjae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.25-31
    • /
    • 2009
  • In this study, the problem of existing soil pavement is a long-term durability lack and crack occurrence. It complements in order to develop the environmental soil pavement material which composites readily blended mineral binder of liquid and decomposed granite soils. It was estimated optimal mixture proportion for unconfined compressive strength, permeability, $Cr^{6+}$detection test, SEM test with age, freezing and thawing test. It resulted mixture proportion of powder types mineral binder for rates of cement : fly ash : plaster was optimal rates of 50 : 33 : 7, and $Cr^{6+}$detection test as a result was a slight production. SEM test with 3days as a result was made Ettringite. It was found that this material was early development of early-strength for chemical. This study indicated that it will execute field appliciability Evaluation test, examination of soil pavement method with decomposed granite soils and mineral binder.

  • PDF

Short and Long-Term Properties of High-Performance Concrete Containing Silica Fume for Bridge Deck Overlay (실리카퓸을 혼합한 교면 포장용 고성능 콘크리트의 단기 및 장기 성능 평가)

  • Won Jong-Pil;Seo Jung-Min;Lee Chang-Soo;Park Hae-Kyun;Lee Myeong-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.743-750
    • /
    • 2005
  • High performance concrete containing silica fume for use in bridge deck overlay emerged as a viable type of bridge deck overlay that economic advantage in construction. They have gained acceptance in Europe, America and Canada in a relatively short time due to their low cost. In this study, high-performance concretes containing silica fume were tested and evaluated in the laboratory to assess their applicability for use in bridge deck overlay. It was conducted with experiments of mechanical and durability characteristics in compressive strength, flexural strength, chloride permeability, abrasion resistance, repeated freezing and thawing cycles and deicing salt scaling resistance. Laboratory test result describe that high-performance concrete containing silica fume for bridge deck overlay application shows most outstanding capacity.

Performance Evaluation of Impermeable Asphalt Mixture using Cationized Silicate Fiber Modifier (양이온화 실리케이트 섬유 개질재(CSM)를 활용한 비배수성 아스팔트 혼합물의 성능 평가)

  • Young-Wook Kim;Sun-Gyu Tae;Young-Soo Kim;Diana Kim;Young-Il Jang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.59-65
    • /
    • 2024
  • In this study, in order to improve the mechanical properties and durability of asphalt mixtures, a modifier (CSM, Cationized Silicate Modifier) was applied to asphalt to derive optimal mixing ratio conditions. Design of asphalt mixture using modified asphalt binder was conducted, and moisture resistance and dynamic stability were evaluated for optimal mixing conditions. The evaluation results showed that it exceeded the standards stipulated in the relevant guidelines, and as a result of conducting a water permeability test on the optimal mixing condition, it was confirmed that impermeable performance was secured. As a result of examining the noise reduction performance through field test, a noise reduction performance of about 10 dB was secured compared to before paving. It will be necessary to secure reliability through continuous noise generation evaluation in the future.