• Title/Summary/Keyword: Durability of Abrasion

Search Result 111, Processing Time 0.021 seconds

An Experimental Study on the Properties of Surface Protection Materials to Durability of Concrete (콘크리트 내구성 향상을 위한 표면보호재의 특성에 관한 실험적 연구)

  • Lee, Jeoung-Yun;Cho, Byoung-Young;Kim, Young-Geun;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.173-176
    • /
    • 2006
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. But concrete durability is affected by carbon dioxide, chloride, water, etc. This study is about surface protection materials-one materials is silane type and the other silicate type for the promoting of concrete durability. As a results, Silane type could protect affection of chloride(Cl-), water(H2O), carbon dioxide(CO2). Also silicate type could improve the abrasion of concrete.

  • PDF

Investigation of steel fiber effects on concrete abrasion resistance

  • Mansouri, Iman;Shahheidari, Farzaneh Sadat;Hashemi, Seyyed Mohammad Ali;Farzampour, Alireza
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.367-374
    • /
    • 2020
  • Concrete surfaces, industrial floors, sidewalks, roads and parking lots are typically subjected to abrasions. Many studies indicated that the abrasion resistance is directly related to the ultimate strength of the cured concrete. Chemical reactions, freeze-thaw cycles, and damages under abrasion are among many factors negatively affecting the concrete strength and durability. One of the major solutions to address the abrasive resistance of the concrete is to use fibers. Fibers are used in the concrete mix to improve the mechanical properties, strength and limit the crack propagations. In this study, implementation of the steel fibers in concrete to enhance the abrasive resistance of the concrete is investigated in details. The abrasive resistance of the concrete with and without steel fibers is studied with the sandblasting technique. For this purpose, different concrete samples are made with various hooked steel fiber ratios and investigated with the sandblasting method for two different strike angles. In total, 144 ASTM verified cube samples are investigated and it is shown that those samples with the highest steel fiber ratios have the highest abrasive resistance. In addition, the experiments determine that there is a meaningful correlation between the steel fiber percentage in the mix, strike angle and curing time which could be considered for improving structural behavior of the fiber-reinforced concrete.

Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method (반응표면 분석법을 이용한 천연마섬유보강 순환굵은골재 콘크리트의 성능 평가)

  • Jeon, Ji Hong;Kim, Hwang Hee;Kim, Chun Soo;Yoo, Sung Yeol;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, evaluated ware the strength and durability of the vegetated water purification channel concrete to which recycled aggregates, hawang-toh and jute were applied. Box-Behnken method of response surface analysis in statistics was applied to the experimental design. Experimental variables are as follows, recycled coarse aggregates, hawang-toh, blast-furnace slag and jute fiber. In the experiment, conducted were the tests of compressive strength, chloride ion penetration, abrasion resistance and impact resistance the replacement rate effects of the recycled aggregates, blast-furnace slag and hwang-toh on the performance of vegetated water purification channel concrete were analyzed by using the response surface analysis method on the basis of the experimental results. In addition, an optimum mixing ratio of vegetated water purification channel concrete was determined by using the experimental results. The optimum mixing ratio was determined to be in 10.0% recycled coarse aggregates, 60.0% blast-furnace slag, 10.1% hwang-toh and 0.16% jute fiber. The compressive strength, chloride ion penetration, abrasion rate, and impact number of fracture test results of the optimum mixing ratio were 24.1 MPa, 999 coulombs, 10.30 g/mm3, and 20 number, respectively.

Abrasion-Resistant Road Markings for Improved Durability Lane to Wear Simulators Test (차선재료의 내구성 향상을 위한 내마모성 시험 적용 연구)

  • Lee, Chang-Geun;Park, Jin-Hwan;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • There is the uncertain period of the construction in case of the products meeting the quality standard of KS M 6080, the quality is degraded because of the abrasive loss of the paint caused by vehicle tires as the traffic amount increases and of the loss and detachment of the glass beads providing the retroreflective function. The abrupt degradation of visibility causes the high frequency of traffic accidents at night and increases the traffic accident rate. Additional supplementary construction induces the direct material and construction costs. As the more cost induction effect than the direct cost, the traffic jam caused by the additional construction increases the indirect social costs such as time cost and vehicle cost. Hence, the study is concerned with performing the abrasion resistance test based on the EN 1436 standard to check and improve the quality of various road marking materials resulting in improving the durability of road marking materials. However, even though the difference in the durability lifetime of resins(binders) is bibliographically or theoretically clear, there was no difference in the durability lifetime (retroreflectivity aspect) of the road marking paint using these binders. The reason is that the bonding of beads was very insufficient or that the cross density caused by crack or freshness was low. Moreover, the measured wet retroreflectivity was distributed as the Rw3 or higher class in average on the basis of EN 1436 but was very insufficient on the basis of the minimum wet threshold retroreflectivity with 100mcd/($m^2{\cdot}lx$) managed overseas.

A Study on the Eco-Friendly Durable Pre-Painting for Concrete Structure (콘크리트 구조물의 친환경 내구성 도장에 관한 기초 연구)

  • Jo, Byung Wan;Choi, Ji Sun;Lee, Seong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.110-116
    • /
    • 2013
  • A concrete structure has become bigger and higher because of development of construction technology and a change in construction environment. Also it tends to focus on repairing, reinforcement and exterior in harmony with environment for structure maintenance and performance improvement. The research is about eco friendly durable painting applicable to concrete structure using civil and architecture. it purpose to improve external beauties and durable problems due to flexibility by variation of temperature, adhesion of exterior wall, crack and delamination in existing organic and mineral painting. For those problems, we made a eco friendly pre-paint that is made with preliminary treatment mixture as a highly enriched waterproof agent and adhesive increasing agent in preprocessing mixture. Then we performed an experiment on durability of prevention neutralization of concrete, durability abrasion, hiding power, adhesion, temperature resistance and resistance to chemical attack. The result of an experiment shows that hiding power is over 0.96 in standard test, durability abrasion test got higher value 1mg than water paint 75mg and tensile strength is 6 times higher than standard waterproof specification.

A Study on Improving the Enhanced Durability of Cylinder Liner according to Cavitation Influence of Combat Equipment Engine (전투장비 엔진의 캐비테이션 영향에 따른 실린더 라이너의 내구성 강화 방안에 관한 연구)

  • Kim, Daeun;Lee, Kijung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.1-8
    • /
    • 2021
  • Cylinder liners used in diesel engines of combat equipment are prone to cavitation due to wet cooling. The damage caused by erosion and corrosion due to cavitation has a fatal effect on the performance and lifespan of a diesel engine. Therefore, a study was conducted to improve the durability of cylinder liners. Two surface treatment techniques were proposed: nitriding and chrome plating. It was observed that the amount of erosion on the surface of nitride-treated cylinder liners was high because the surface-treated part eroded due to its weak impact resistance against the bubble explosion generated by cavitation. In contrast, the chrome-plated cylinder liner had a lower amount of erosion among the specimens subjected to the accelerated test. These results verified that the resistance of chrome-plated liners against cavitation is high. Therefore, it can withstand the impact of bubble explosion. If the chrome plating thickness is set with reference to the KS standard, an exceptional durability of abrasion, wear resistance, and corrosion resistance can be obtained. If the thickness is set between 120~250㎛, it is expected that the durability of the cylinder liner can be improved. Although a recovery method for corroded cylinder liners is suggested, the proposed method has an inherent risk of crack generation. Therefore, further research is required to solve this problem.

Mechanical and Durability Characteristics of Latex-Modified Concrete Using Ultra Rapid Hardening Cement (초속경 시멘트를 이용한 라텍스 개질 콘크리트의 역학성능과 내구성능)

  • Park, Sang-Hyun;Jung, Si-young;Kim, Hyun-yu;Choi, Kyoung-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.153-160
    • /
    • 2019
  • The purpose of this study was to investigate the mechanical and durability characteristics of latex-modified concrete using ultra rapid hardening cement : four types of mechanical tests including compressive strength, modulus of elasticity, flexural strength and bond strength were performed; and seven types of durability tests including resistance of concrete to chloride ion penetration, freeze-thaw resistance, scaling resistance, coefficient of thermal expansion, cracking tendency, abrasion resistance and drying shrinkage were performed. Required material performance of each test was determined in accordance with the Korea specification for repair of concrete and pavement repairing materials. The test results satisfied the required material performances, and presented a good mechanical and durability characteristics. In particularly, the materials showed early development of compressive strength, flexural strength and bond strength at 3 and 4 hours after curing. SEM photos were also taken to investigate the micro structures of the materials after chloride ion penetration test.

Abrasion Resistance Property of the Magnesia Phosphate Ceramics(MPC) Artificial Stone Using the Waste Porcelain (폐자기를 사용한 마그네시아 인산염 세라믹(MPC) 인조석재의 내마모특성)

  • Yoo, Yong-Jin;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.51-52
    • /
    • 2014
  • Recently, it is the global warming phenomenon because of the greenhouse gas exhaustion caused by and the environment problem is serious. And it is the situation where the problem of the exhaustion of resource because of the indiscriminate picking of the that is the raw material of the cement, limestone and natural aggregate are emphasized. In addition, thus the cement reduction amount of use and substitute material research is the urgent actual condition with the gas emission, which here it is generated in conducting compression molding in the building stone manufacturing process performance degradation phenomenon and fire resistance, and problem of the durability. Therefore, in this research, because of being the magnesia phosphate ceramics, the waste porcelain is applied and the anti-wearing character of the artificial stone according to it tries to be investigated.

  • PDF

A Study on the Dynamic Behaviors of Ballast Track using Field Test (현장측정을 통한 자갈도상궤도의 동적 거동 분석)

  • Park Yong-Gul;Choi Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.401-411
    • /
    • 2006
  • The major objective of this study is to investigate the dynamic behaviors of track due to the deterioration characteristics of ballast for servicing tracks by the field test. The durability of ballast plays an important role in the track behaviour. To estimate the deterioration characteristics of ballast, several tests have been carried out by several scholars. The deterioration characteristics of ballast is one of the most important factor in the dynamic behaviour of track and its life. In this paper abrasion/breakage characteristics of ballast is studied to predict the effect of physical ballast characteristics on ballast track. To reveal deterioration characteristics of ballast, the field test were carried out. The deterioration characteristics, studied in this paper, is applied to the dynamic behaviour of track in various conditions.

A Study on the Dynamic Behaviors of Ballast Track using Field Test (현장측정을 통한 자갈도상 궤도의 동적 거동 분석)

  • Choi, Jung-Youl;Park, Kyun-Seo;Ryu, Joong-Youl;Park, Jeong-Gun;Ryu, Kyoung-Sik;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.494-507
    • /
    • 2006
  • The major objective of this study is to investigate the dynamic behaviors of track due to the deterioration characteristics of ballast for servicing tracks by the field test. The durability of ballast plays an important role in the track behaviour. To estimate the deterioration characteristics of ballast, several tests have been carried out by several scholars. The deterioration characteristics of ballast is one of the most important factor in the dynamic behaviour of track and its life. In this paper abrasion/breakage characteristics of ballast is studied to predict the effect of physical ballast characteristics on ballast track. To reveal deterioration characteristics of ballast, the field test were carried out. The deterioration characteristics, studied in this paper, is applied to the dynamic behaviour of track in various conditions.

  • PDF