• 제목/요약/키워드: Durability of Abrasion

검색결과 111건 처리시간 0.022초

초경합금에 FVAS로 코팅한 DLC 박막의 특성 (Characteristic of DLC Thin Film Fabricated by FVAS Method on Tungsten Carbide)

  • 천민우;박용필;김태곤;이호식
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.812-816
    • /
    • 2011
  • An optical lens is usually produced in the manner of high temperature compression molding with tungsten carbide alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coating the core surface. As main methods used in surface improvement technologies using thin film, DLC present high hardness, chemical stability, and outstanding durability of abrasion to be extensively applied in various industrial fields. In this study, the effect of DLC coating of a thin film by means of the FVAS (filtered vacuum arc source) analyzed the characteristics of thin film. Surface roughness before and after DLC coating was measured and the result showed that the surface roughness was improved after coating as compared to before coating. In conclusion, it was observed that DLC coating of the ultra hard alloy core surface for molding had an effect on improving the surface roughness and shape of the core surface. It is considered that this will have an effect on improving abrasion resistance and the service life of the core surface.

상용차 디젤의 연료분사장치 유닛 인젝터 핵심부품인 스필 밸브의 성능 복원 관한 연구 (A Study on Restoration Technology of Unit Injector Spill Valve for Injection System of Commercial Diesel Engine)

  • 이충근;이정호;이대엽
    • 한국자동차공학회논문집
    • /
    • 제25권3호
    • /
    • pp.389-396
    • /
    • 2017
  • Restorations of automotive parts have been done ever since the first vehicle was produced. Because the most expensive parts of a vehicle are in the engine system, there have been various restoration methods developed for engine parts. In the case of commercial diesel engines, the fuel injection device is a key and expensive component. It also has a significant effect on vehicle performance. In particular, reduced engine power and increased exhaust gas emissions may result from mechanical damage due to abrasion of the spill valve in the fuel injection system of a diesel engine. In this paper, restoration techniques for damaged parts are applied to restore the abrasion of a spill valve of fuel injection, also called as the "unit injector", of commercial diesel engines. In order to recover the damage, optimized polishing techniques using hard-metal and coating processes are applied. To evaluate restoration techniques for the spill valve, performance and durability tests are performed on a test bench.

Effect of fly ash and plastic waste on mechanical and durability properties of concrete

  • Paliwal, Gopal;Maru, Savita
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.575-586
    • /
    • 2017
  • The disposal of polythene waste and fly ash is causing serious threat to the environment. Aim of this study is to decrease environmental pollution by using polythene waste and fly ash in concrete. In this study, cement was partially replaced with 0%, 5%, 10%, 15% and 20% fly ash (by weight) and plastic waste was added in shredded form at 0.6% by weight of concrete. The specimens were prepared for the concrete mix of M25 grade and water to cementitious material ratio (w/c) was maintained as 0.45. Fresh concrete property like workability was examined during casting the specimens. Hardened properties were found out by carrying out the experimental work on cubes, cylinders and beams which were cast in laboratory and their behavior under test were observed at 7 & 28 days for compressive strength and at 28 days for density, flexural strength, dynamic modulus of elasticity, abrasion resistance, water permeability and impact resistance. Overall results of this study show that addition of 0.6% (by weight of the concrete) plastic waste with 10% (by weight of cement) replacement of cement by fly ash result an improvement in properties of the concrete than conventional mix.

2 리터급 터보과급 가솔린 기관에서 내장형 WGV가 기관 성능에 미치는 영향 (The Effect of the Embedded WGV on the Engine Performance for a 2-liter Turbo-charged Gasoline Engine)

  • 장종관
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.232-241
    • /
    • 2016
  • The turbocharger, to decrease the harmful exhaust gas(CO, HC and etc.) and $CO_2$ emission as well as the increase of the engine output, would be an useful method for engine downsizing. Therefore the thermal endurance of turbine blade, the lubrication of turbine shaft and the engine knock according to the supercharge of the inlet air, had been studied. And there had been much progress in these research tasks to be achieved a breakthrough. But a study on the built-in WGV of a gasoline engine for a passenger car which may effect on the engine performance, is few. In this paper, the effect of the embedded WGV on the engine performance was performed through the endurance test, which was conducted more than 300 hrs using the 4 stroke, 1998 cc, water-cooled engine. To sum up the major results, there were an abrasion in the area of the WGV head edge and the thermal deformation on the WGV head face, These phenomena led to reducing the boost pressure which caused the reduction in the volumetric efficiency of the engine. It resulted in decreasing the engine power gradually during the life cycle of the embedded WGV.

Effect of Organic Photosensitizers on the Antimicrobial Property of Polyurethane coated Leather

  • Oh, Kyung Wha;Lim, Ki Sub
    • 한국의류산업학회지
    • /
    • 제15권4호
    • /
    • pp.630-634
    • /
    • 2013
  • Cow leather coated with polyurethane film that contains various organic photosensitizers was investigated to demonstrate the antimicrobial properties in the application of the material to protective clothing and home appliances. To prepare the antimicrobial coating on leather surfaces with high potency against microbes, photoactive agents, such as benzophenone (BP), 4,4'-bis(dimethylamino) benzophenone (MK), 4,4'-dihydroxybenzophenone (DHBP) and methylene blue (MB), were incorporated into polyurethane-based coating solutions. The photoactive antimicrobial agent treated leather samples were characterized by SEM, color appearance, color fastness against abrasion, and antimicrobial tests. The optical properties of organic photosensitizers indicated that active UV absorbance ranges were different: BP (around 250 nm), MK (around 360 nm), DHBP (around 305 nm) and MB (around 295 nm &570 nm-685 nm). The intensity of the UV absorbance curve at the UVA light wavelength for the antimicrobial test showed the highest value with MK; subsequently, this was followed by MB, DHBP and BP in decreasing order. The treated-leather samples demonstrated excellent antibacterial activity under UVA light. The antimicrobial effects for the Staphylococcus aureus were superior to Escherichia coli. Moreover, the polyurethane finishing showed an effective durability to abrasion. The overall results indicated that DHBP is the most suitable PU coating additive to provide antimicrobial properties to leather as well as color and surface appearance than MK, MB, and BP.

Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

  • Kulunk, Safak;Kulunk, Tolga;Sarac, Duygu;Cengiz, Seda;Baba, Seniha
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권4호
    • /
    • pp.272-277
    • /
    • 2014
  • PURPOSE. The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS. Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with $Al_2O_3$; Co: airborne particle abrasion with silica-coated $Al_2O_3$; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (${\alpha}=.05$). RESULTS. Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION. Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling.

Quality of Recycled Fine Aggregate using Neutral Reaction with Sulfuric Acid and Low Speed Wet Abrader

  • Kim, Ha-Seog;Lee, Kyung-Hyun;Kim, Jin-Man
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.490-502
    • /
    • 2012
  • The use of recycled aggregate, even for low-performance concrete, has been very limited because recycled aggregate, which contains a large amount of old mortar, is very low in quality. To produce a high-quality recycled aggregate, removing the paste that adheres to the recycled aggregate is very important. We have conducted research on a complex abrasion method, which removes the component of cement paste from recycled fine aggregate by using both a low-speed wet abrasion crusher as a mechanical process and neutralization as chemical processes, and well as research on the optimal manufacturing condition of recycled fine aggregates. Subsequently, we evaluated the quality of recycled fine aggregate manufactured using these methods, and tested the specimen made by this aggregate. As a result, it was found that recycled fine aggregates produced by considering the aforementioned optimal abrasion condition with the use of sulfuric acid as reactant showed excellent quality, recording a dry density of 2.4 and an absorption ratio of 2.94. Furthermore, it was discovered that gypsum, which is a reaction product occurring in the process, did not significantly affect the quality of aggregates. Furthermore, the test of mortar using this aggregate, when gypsum was included as a reaction product, showed no obvious retarding effect. However, the test sample containing gypsum recorded a long-term strength of 25.7MPa, whereas the test sample that did not contain gypsum posted a long-term strength of 29.4MPa. Thus, it is thought to be necessary to conduct additional research into the soundness and durability because it showed a clear reduction of strength.

Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권4호
    • /
    • pp.275-284
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS. RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (${\alpha}$=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (${\alpha}$=.05). The roughness and elemental proportion were evaluated by Kruskal-Wallis test and Mann-Whitney U test. RESULTS. Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION. An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required.

온열안마기용 섬유재료의 내구성 향상 (Durability Enhancement of Textile Materials for Thermotherapy Massager)

  • 이주영;김호동
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.2292-2299
    • /
    • 2010
  • 온열안마기의 내부천으로 사용되고 있는 직물의 내구성을 향상시키고자 기존 PET/면 혼방직물의 마모현상을 분석하고, 그 문제점을 보완할 수 있는 난연성 PET 직물을 설계/제조한 후 물리적 성능 및 내구성을 평가하였다. 기존 직물의 경우 구동부분의 반복적인 마찰에 의한 마모뿐만 아니라, 구동시 내부천의 이동에 의해 발생하는 접힘 현상이 회복되지 못하기 때문에 직물의 파손이 가속화되는 것으로 나타났다. 따라서 섬유재질의 변경, 신축사, 강연사, 조직의 변경 등을 적용하여 물리적 성능 및 내마모성을 크게 개선한 내부천을 제조하였다. 특히 신축사를 사용 한 직물의 내구성은 크게 향상되어 기존 직물 대비 2배 이상의 사용시간을 증가시킬 수 있었으며, 강연사를 사용한 직물은 약 1.5배 정도 내마모시간이 증가하는 결과를 얻었다.

경화제를 사용하지 않은 에폭시 시멘트 모르타르의 압축강도 특성에 관한 연구 (Strength Characteristics of Epoxy Cement Mortar without Hardening Agent)

  • 박영식
    • 한국산업융합학회 논문집
    • /
    • 제10권4호
    • /
    • pp.207-211
    • /
    • 2007
  • The durable lifetime of RC structures is shortened by various reasons, which are the generation of cracks in construction and service term, the exterior deterioration according to climatic condition, the surface damage due to chloride attack and the corrosion of reinforced bars. The durability of concrete structures is nevertheless able to be increased by the method and the material of reinforcement and repair. The epoxy resin is widely used for reinforment and repair of concrete because of the superiority in mechanical property, adhesive property, abrasion resistance, impact resistance and chemical resistance. The epoxy cement mortar with hardening agent has a lot of disadvantages that are troublesome mixing work, weakened weatherability and high cost for hardening agent. In this study, the mix proportion of mortar is presented just only with epoxy resin and some admixtures, and the test result of mortar without hardening agent shows the higher strength than the mortar with hardening agent. In the mix proportion, the weight of epoxy resin must be less than 15% of the unit weight of cement, and 10% of unit weight of cement is adequate for the weight of admixtures.

  • PDF