• Title/Summary/Keyword: Durability for freezing & thawing

Search Result 204, Processing Time 0.027 seconds

An Experimental Study on the Freeze-Thaw Resistance of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 동결-융해 저항성에 관한 실험적 연구)

  • 윤경구;이주형;홍창우;박제선
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.153-161
    • /
    • 1998
  • Concrete structures has been deteriorated by and freezing the thawing due to temperature gap. This study was conducted to evaluate durability of concrete which are increasingly demanded recently. Therefore the research of durability must be executed for application of waste foundry sand concrete real structures. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio. Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at -18$^{\circ}C$ and 4$^{\circ}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that strength of concrete is increased the W/C ratio decrease, the Sand/Waste foundry sand ratio increases when the concrete contains AE agent and decreasing W/C ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row. Therefore it is turn out the waste foundry sand could be applied to concrete from the experiment.

The Compressive Strength and Durability Characteristics of Lime-Cement-Soil Mixtures (석회-시멘트 혼합토의 압축강도 및 내구 특성)

  • Oh, Sang-Eun;Yeon, Kyu-Seok;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • In this study, the compressive strength characteristics of lime-cement-soil mixtures, composed of lime, soil, and a small amount of cement, were investigated by performing the unconfined compression tests, the freezing and thawing tests, the wetting and drying tests and the permeability tests. The specimens were made by mixing soils with cement and lime. The cement contents were 0, 6, 8 and 10 %, and the lime contents were 2, 4, 5, 10, 15 and 20 % in weight. Each specimen was cured at constant temperature in a humidity room for 3, 7 and 28 days. The compressive strength characteristics of the lime-cement-soil mixtures were then investigated using the unconfined compression tests, freezing and thawing tests and the wetting and drying tests. Based on the test results, a discussion was made on the applicability of the lime-cement-soil mixtures as a construction material.

The Experimental Study on the Durability of Concrete under Freezing & Thawing Action and Salt attack (염해와 동해를 받는 콘크리트의 내구성 평가실험)

  • Lee, Joan-Gu;Park, Kwang-Su;Cho, Young-Kwon;Kim, Meyong-Won;Kim, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.213-216
    • /
    • 2005
  • Salt attack and freezing & thawing test, one of the combined deterioration tests was performed to explore the mechanism of concrete structure deterioration under marine environment. Simple submerging test was proceeded to draw out its diffusion factor with salt water at the same time. Some of the mechanisms were driven with using three types of cements and four kinds of salt water concentrations. $\circ$ TBC was more durable than OPC or SRC for freezing and thawing action $\circ$ The higher chloride concentration of salt water was, the faster relative dynamic elastic modulus decreased and the higher the loss of weight was. $\circ$ The diffusion factor of TBC was smaller than those of TBC or SRC at simple submergence of concrete specimens into salt water.

  • PDF

Evaluation on Resistance of Chloride Attack and Freezing and Thawing of Concrete with Surface Penetration Sealer (표면 침투제에 따른 콘크리트의 염화물 침투와 동결융해 저항성 평가)

  • Kim Myung Yu;Yang Eun Ik;Lho Byeong Cheol;Kim Jeong Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.505-508
    • /
    • 2005
  • Concrete has a void, which exists as one of defect in concrete. If the porosity of concrete increases, durability of concrete decreases. In this paper, to improve surface void of concrete, surface penetration sealers are applied to specimen. And it were investigated that the resistances of chloride penetration and freezing and thawing for concrete with surface penetration sealer of two types. According to the results, surface penetration sealer has not show a harmful influence on strength and resistance of freezing and thawing. Also, B type surface penetration sealer was more superior in resistance of chloride penetration.

  • PDF

Prediction for Pore Structure of Cement Mortar Exposed to Freezing-Thawing Action by Ultrasonic Pulse Velocity Measurement (초음파 속도 측정을 통한 동결·융해 작용을 받는 시멘트 모르타르의 공극 구조 예측)

  • Pang, Gi-Sung;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.421-426
    • /
    • 2017
  • In this paper, the effect of freezing-thawing action on the dynamic modulus and porosity was examined by ultrasonic pulse velocity (UPV) measurement. UPV was measured every 30 cycles during the freezing-thawing test, and dynamic modulus and porosity of cement mortar were calculated by relationship among UPV, porosity and dynamic modulus. Porosity analysis was also performed to compare with calculated porosity by mercury intrusion porosimetry (MIP). From the test, it was found that dynamic modulus of cement mortar was decreased 13% after 300 cycles. The calculated porosity was increased about 30% compared with the initial porosity before freezing-thawing action. The calculated porosity showed similar increase tendency with the porosity measured by MIP. So, it can be concluded that the porosity change of cementitious materials by freezing-thawing action can be predicted by UPV measurement.

A study on the Freezing-Thawing Resistance for Repair Material of Concrete Structure (콘크리트 보수재료의 동결융해저항성에 관한 연구)

  • Lee, Bong-Chun;Chae, Sung-Tae;Jung, Sang-Hwa;Woo, Young-Je;Moon, Jae-Heum;Kim, Tae-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.621-624
    • /
    • 2008
  • Repair materials which applied to the concrete structures may have different quality characteristics depending on the environmental factors. Evaluation on durability of domestic repair materials have not yet secured enough quality performance on durability, mainly due to the lack of test methods resulted from various environmental factors. In this study, we carried out the tests on freezing and thawing resistance of domestic repair materials with different environmental factors applied under BS EN 13687, and analyzed the results by comparing with Korea's national test standards(KS F 4716). The results indicate that after the repetition of dry and wet conditions and the test on freezing and thawing with salt immersion resistance bond strength might show great difference depending on the type of repair materials and the size of sample. For securing better quality performance of repair materials, it is required to establish various standards on the test methods of freezing and thawing resistance with different environmental factors applied.

  • PDF

An experimental evaluation for improving resistance against freezing-thawing of concrete (콘크리트 동결융해 저항성 향상을 위한 실험적 평가)

  • Lee, Sang-Hyun;Kim, Kwang-Ki;Yoo, Jae-Yong;Lee, Joo-Ho;Ryu, Hwa-Sung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.151-152
    • /
    • 2015
  • Concrete parking slab is often deteriorated severely after winter season because of concrete's freezing and thawing phenomenon. In this study, some methods to improve resistance against freezing-thawing is experimentally tested.: 1) concrete strength, 2) air content in concrete, 3) saw-cut effect and finish material. After experiment, in case of no finishes, 24MPa concrete with 4% air content is tested best result in terms of relative elastics modulus among testes ones. In case of concrete with finishes, all specimens are improved regardless of finishes compared to concrete with no finishes. Improvement degree compared to no finish is as follows : Polyurea > Resin-mortar > hardener and the number of improvement degree is 5, 4, 2% respectively. Further work is required considering construction site condition such as gaining water on surface and remicon in order to reflect site condition.

  • PDF

Evaluation on Resistance of Chloride Attack and Freezing and Thawing of Connote with Surface Penetration Sealer (표면 침투제에 따른 콘크리트의 염화물 침투와 동결융해 저항성에대한 평가)

  • Yang, Eun-Ik;Kim, Myung-Yu;Lho, Byeong-Cheol;Kim, Jeong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.65-71
    • /
    • 2006
  • Concrete has a void, which exists as one of defect in concrete. If the porosity of concrete increases, durability of concrete decreases. In this paper, to improve surface void of concrete, surface penetration sealers are applied to specimen. And, it were investigated that the resistances of chloride penetration and freezing and thawing for concrete with surface penetration sealer of two types. According to the results, surface penetration sealer has not show a harmful influence on strength and resistance of freezing and thawing. Surface penetration sealers were effective in the resistance of chloride penetration.

Long-Term Degradation Mechanism of GFRP Dowel Bar for Jointed Concrete Pavement under Repeated Freezing-Thawing (동결융해 반복을 받는 콘크리트 포장용 GFRP 다웰바의 장기성능저하 메커니즘)

  • Won, Jong Pil;Jang, Chang Il;Park, Chan-Gi;Lee, Sang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.325-330
    • /
    • 2008
  • This study carried out the repeated freezing-thawing test in order to understand the long-term degradation mechanism of GFRP dowel bars. The mechanical property measured by shear test. In addition, analyzes repeated freezing-thawing degradation mechanism of GFRP dowel bars by observe the microstructure through Scanning Electron Microscope (SEM) and Gas Physisorption techniques. As the result of test, it was found that the mechanical property didn't decreased as the exposure time to water and repeated freezing-thawing environment. It shows clearly observed microstructure investigations.

Resistance to Freezing and Thawing on Concrete with Recycled Aggregate (재생골재를 사용한 콘크리트의 내동해성)

  • 문대중;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.85-88
    • /
    • 2001
  • Utilization of demolished-concrete as recycled aggregate has been researched for the purpose of substituing for insufficient natural aggregate, saving resources and protecting environment. There, however, are some problems that qualities of recycled aggregates are not only largely diverse, but also mechanical properties of recycled aggregate concrete decrease a little in comparison with those of natural aggregate concrete. In this study, the resistance to freezing and thawing of recycled aggregate concrete was highly different due to adhered mortar on recycled aggregate, and durability factor of concrete with NA SRA and DRA was decreased more than that of control concrete. However, durability factor of concrete with AA SRA was larger than that of control concrete.

  • PDF