• Title/Summary/Keyword: Durability Performance

Search Result 1,808, Processing Time 0.026 seconds

Effect of Adhesion Strength Between Flexible Substrates and Electrodes on the Durability of Electrodes (유연 기판과 전극 사이의 접합력이 전극의 내구성에 미치는 영향)

  • Doyeon Im;Byoung-Joon Kim;Geon Hwee Kim;Taechang An
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.86-92
    • /
    • 2024
  • Flexible electronic devices are exposed to repeated mechanical deformation; therefore, electrode performance is an important element. Recently, a new technology has been developed to improve the adhesion strength between polymer substrates and metal thin films through the cross-linking reaction of bovine serum albumin (BSA) bioconjugation proteins; however, additional performance evaluation as an electrode is necessary. Therefore, in this study, we investigated the effect of adhesive strength between a flexible substrate and a metal thin film on the performance of a flexible electrode. Cracks and changes in the electrical resistance of the electrode surface were observed through outer bending fatigue tests and tensile tests. As a result of a bending fatigue test of 50,000 cycles and a tensile test at 10% strain, the change in the electrical resistance of the flexible electrode with a high adhesion strength was less than 40%, and only a few microcracks were formed on the surface; thus, the electrical performance did not significantly deteriorate. Through this study, the relationship between the adhesion strength and electrical performance was identified. This study will provide useful information for analyzing the performance of flexible electrodes in the commercialization of flexible electronic devices in the future.

Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete (국산 매립회의 골재특성 평가 및 매립회 콘크리트의 내구 성능 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.311-320
    • /
    • 2011
  • Fly ash (FA), byproduct from power plant has been actively used as mineral admixture for concrete. However, since bottom ash (BA) is usually used for land reclaim or subbase material, more active reuse plan is needed. Pond ash (PA) obtained from reclaimed land is mixed with both FA and BA. In this study, 6 PA from different domestic power plant are prepared and 5 different replacement ratios (10%, 20%, 30%, 50%, and 70%) for fine aggregate substitutes are considered to evaluate engineering properties of PA as fine aggregate and durability performance of PA concrete. Tests for fine aggregate of PA for fineness modulus, density and absorption, soundness, chloride and toxicity content, and alkali aggregate reaction are performed. For PA concrete, durability tests for compressive strength, drying shrinkage, chloride penetration/diffusion, accelerated carbonation, and freezing/thawing are performed. Also, basic tests for fresh concrete like slump and air content are performed. Although PA has lower density and higher absorption, its potential as a replacement material for fine aggregate is promising. PA concrete shows a reasonable durability performance with higher strength with higher replacement ratio. Finally, best PA among 6 samples is selected through quantitative classification, and limitation of PA concrete application is understood based on the test results. Various tests for engineering properties of PA and PA concrete are discussed in this paper to evaluate its application to concrete structure.

The Catalytic Combustor for Gas Turbines (가스터빈 촉매연소기의 개발 현황)

  • Lee, Dong-Hun;Lee, Kang-Yeop;Choi, Seong-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.265-272
    • /
    • 2003
  • Some catalytic reactors for industrial/generation gas turbines were reviewed and investigated to understand the current status and future prospect for ultra low NOx catalytic gas turbine combustor. Catalytic reactor which was applied to 1${\sim}$10MW class gas turbine has achieved the ultra low emission corresponding to less than 3ppm NOx and 10ppm CO. But the durability and sizing flexibility of catalyst is needed to improve the catalyst performance for commercial gas turbine operation.

  • PDF

Experimental Study of Durability of GFRP for Chemical Environment (GFRP의 화학 환경에 대한 내구성 시험)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyeong-Yeol;Moon, Chang-Kwon;Lee, Seong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.605-608
    • /
    • 2006
  • This paper presents experimental results for durability performance of GFRP composite exposed to various environmental conditions. Specimens were conditioned for 7 environmental cases and immerged up to 150 days. A total of 720 specimens were prepared and tested for tensile strength for each immersion time. The results indicate that the tensile strength of the conditioned specimens was significantly reduced, regardless of the environmental factors considered, due to the degradation of GFRP.

  • PDF

Durability of Various Anti-Corrosive Organic Coatings in Marine Environment for Twelve Years

  • Yamamoto, Mashiro;Kajiki, Toshitaka;Kamon, Toshikuni;Yoshida, Kotaro
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.20-25
    • /
    • 2004
  • In order to clarify the durability of protective coatings for maritime steel structures, various anti-corrosive organic coated steel samples were exposed for twelve years in semitropical marine environment at Miyakojima Island, Okinawa, JAPAN. Samples were various organic coated steel pipes, 4.0 m in length and 150 mm in diameter. While the bare steel pipe entirely corroded in 4.5 mm thickness in four and half years, these organic coated steel pipes exhibited protective appearances after twelve-year-exposure except for the defect in the coatings. Polyethylene (PE) lining pipe exhibited a good protective performance. Urethane painted pipe was also good but some barnacles stuck to its surface. A combination of petrolatum tape and FRP cover showed sufficient corrosion resistance for steel surface. The correlation in results between exposure and laboratory acceleration test was examined. It was found that salt spray test (SST) results corresponded to rusted area of scratched portion and that adhesion change of coating layer corresponded to the rotating immersion test result. Among the on-site measured data, volume resistivity is utilized for the index of corrosion protection performance of organic coating.

Acceleration Test of Membrane-Electrode Assembly in PEMFC (고분자연료전지의 전해질-전극 접합체의 열화 가속시험)

  • Lee, Jung-Hun;Yoon, Young-Gi;Jung, Eun-Ha;Lee, Won-Yong;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-96
    • /
    • 2007
  • Recently, much attentions have been paid on the commercialization of PEMFC, especially for the applications of residential and portable. In order to achieve the early commercialization of PEMFC, thee are two hurdles to overcome. One is cost down and the other is improvement of durability of the system components. Numerous companies have tried to reduce the production cost and the main research topics have been changed from performance to durability improvement. In this work, acceleration test were performed to find and evaluate the main reason of degradation of the MEA(membrane-electrode assembly) which is one of the core component of the PEMFC system. Based upon the test results, a way to make durable MEA was suggested. Acceleration tests were made by applying high voltage of 1.2V to the several kinds of single cells to increase the growth of catalyst particles. Cell performance, ac-impedance and electrochemically active area measurements were made atfter every 8 hours of acceleration test. Degradations of catalyst and membrane were examined by SEM, TEM and XRD. Obtained results were discussed in terms of structural stability and loss of catalyt and ionomers in the electrode layer. In addition, the way to make highly durable MEA was suggested.

  • PDF

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

A Study on Mix Design of Concrete Pavement on Early Strength Development in Cool Weather Condition (저온 환경에서의 조기강도 발현을 위한 콘크리트 포장 배합 연구)

  • Ryu, SungWoo;Kim, JinHwan;Hong, SeungHo;Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • PURPOSES : This paper focuses on strength development according to the mix design with cement type and mineral admixture from laboratory and field tests in cool weather. METHODS : Two methods evaluated the mix design of concrete pavement in cool weather. Firstly, laboratory tests including slump, air contents, setting time, strength, maturity, and freezing-thawing test were conducted. Three alternatives were selected based on the tests. Secondly, a field test was conducted and the optimum mix design in cool weather was suggested. RESULTS : It is an evident from the laboratory test that a mix with type III cement showed better performance than the one with type I cement. There was a delay in strength development of a mix with mineral admixture compared to mix design without any mineral admixture. In the field test, type III cement+flyash 20% mix design proved the best performance. CONCLUSIONS : For concrete pavement in cool weather, mix design using type III cement could overcome the strength delay due to mineral admixture. Moreover, it is possible to make sure of durability of pavement. Therefore, strength and durability problems due to cool weather would decrease.

Fatigue Characteristics of Bicycle Frames Depending on Types and Materials (자전거 프레임의 소재 및 종류에 따른 피로특성)

  • Kwon, Kyoung-Bae;Cheong, Seong Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.8-12
    • /
    • 2017
  • Bicycles are very popular sporting goods in these days. Thus, the durability of bicycles is very important for the safety of bicyclists. It is well known that a bicycle frame is a major component which is essential to the safety and performance of a complete bicycle. In this study, the durability of bicycle frames were experimentally investigated under the fatigue load. Eighty bicycle frames with different types and materials were prepared and tested according to EN standards. Three kinds of fatigue loads, that is, pedalling, vertical and horizontal fatigue load, which occur constantly during riding a bicycle, were applied to the bicycle frames. The experimental results show that the horizontal fatigue load was the severest mode to pass EN standard. The pass ratio of horizontal fatigue load test was 45.2%, while the pass ratio of vertical fatigue load test was 100%. Most of cracks were found at the right side of bottom bracket shell and at the intersection area between head tube and down tube. It seems that the experimental results can be applied to improve the safety and performance of a bicycle frame.

A Study on Alternative Fuel as Fuel Substitutes in a DI Diesel Engine(II) (Startability and Durability) (디젤기관의 대체연료 이용에 관한 연구(II) (시동성 및 내구성 문제))

  • 오영택;정규조;촌산정
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.48-53
    • /
    • 1988
  • In a previous report, the properties of vegetable oils as diesel fuel substitutes were investigated and the basic load performance of a diesel engine was examined using vegetable oil. The results show that despite of the long term chain hydrocarbon structure and large droplet size due to high viscosity, vegetable oils have good basic performance and exhaust emissions, however they cause serious problems as carbon deposit buildup, they have poor durability, and also poor thermal efficiency. In this paper, the startability and engine durability with long term operation was tested by physical methods for reducing viscosity when vegetable oil was used as compared against diesel fuel. The results obtained in this investigation may be stated as follows; (1) There is no problem in startability when vegetable oil was used as diesel fuel substitutes as far as fuel temperature is higher than 30.deg. C (2) The carbon deposits were most extensive at lower loads and lower engine speeds, and deposit buildup more heavily on the cooler parts of the combustion chamber wall. (3) Blends with 25% diesel fuel and 20v-% ethanol are effective in reducing the carbon deposit buildups. (4) Significant improvement in carbon deposit and piston ring stick can be obtained by heating fuel(200.deg.).

  • PDF