DOI QR코드

DOI QR Code

Effect of Adhesion Strength Between Flexible Substrates and Electrodes on the Durability of Electrodes

유연 기판과 전극 사이의 접합력이 전극의 내구성에 미치는 영향

  • Doyeon Im (Department of Mechanical Design Engineering, Andong National University) ;
  • Byoung-Joon Kim (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Geon Hwee Kim (School of Mechanical Engineering, Chungbuk National University) ;
  • Taechang An (Department of Mechanical Robotics Engineering, Andong National University)
  • 임도연 (안동대학교 기계설계공학과) ;
  • 김병준 (한국공학대학교 신소재공학과) ;
  • 김건휘 (충북대학교 기계공학부) ;
  • 안태창 (안동대학교 기계로봇공학과)
  • Received : 2024.02.29
  • Accepted : 2024.03.12
  • Published : 2024.03.31

Abstract

Flexible electronic devices are exposed to repeated mechanical deformation; therefore, electrode performance is an important element. Recently, a new technology has been developed to improve the adhesion strength between polymer substrates and metal thin films through the cross-linking reaction of bovine serum albumin (BSA) bioconjugation proteins; however, additional performance evaluation as an electrode is necessary. Therefore, in this study, we investigated the effect of adhesive strength between a flexible substrate and a metal thin film on the performance of a flexible electrode. Cracks and changes in the electrical resistance of the electrode surface were observed through outer bending fatigue tests and tensile tests. As a result of a bending fatigue test of 50,000 cycles and a tensile test at 10% strain, the change in the electrical resistance of the flexible electrode with a high adhesion strength was less than 40%, and only a few microcracks were formed on the surface; thus, the electrical performance did not significantly deteriorate. Through this study, the relationship between the adhesion strength and electrical performance was identified. This study will provide useful information for analyzing the performance of flexible electrodes in the commercialization of flexible electronic devices in the future.

Keywords

Acknowledgement

본 연구는 2023, 2024년도 국립안동대학교 기본 연구지원사업에 의하여 연구되었습니다.

References

  1. S. H. Kang and S. W. Hong, "Recent Progress in Flexible/Wearable Electronics," J. Weld. Joining, Vol. 32, No. 3, pp. 34-42, 2014.  https://doi.org/10.5781/JWJ.2014.32.3.34
  2. G. B. Lee and C. Nah, "Preparation and Property of Flexible/Stretchable Electrodes", Elastomers and Composites, Vol. 47, No. 4, pp. 272-281, 2012.  https://doi.org/10.7473/EC.2012.47.4.272
  3. W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, "Flexible Electronics toward Wearable Sensing", Acc. Chem. Res., Vol. 52, No. 3, pp. 523-533, 2019.  https://doi.org/10.1021/acs.accounts.8b00500
  4. S. Huang, Y. Liu, and Z. Ren, "Flexible electronics: stretchable electrodes and their future", Adv. Funct. Mater., Vol. 29, No. 6, pp. 1805924(1)-1805924(43), 2019.  https://doi.org/10.1002/adfm.201805924
  5. H. Y. Lee, S. M. Yi, J. H. Lee, H. S. Lee, S. Hyun, and Y. C. Joo, "Effects of Bending Fatigue on the Electrical Resistance in Metallic Films on Flexible Substrates", Met. Mater. Int., Vol. 16, No. 6, pp. 947-951, 2010.  https://doi.org/10.1007/s12540-010-1213-2
  6. B. J. Kim, Y. W. Kwon, J. S. Lee, and Y. C. Joo, "Mechanical Stress and Fatigue Lifetime of Metal Interconnect for Wearable Electronics during Twisting Deformation", Proc. of KSPE 2019 Autumn Conf., p. 476, Changwon, Korea, 2019. 
  7. T. W. Kim, J. S. Lee, Y. C. Kim, Y. C. J, and B. J. K, "Bending Strain and Bending Fatigue lifetime of Flexible Metal Electrodes on Polymer Substrates", J. Mater., Vol. 12, No. 15, pp. 2490(1)-2490(9), 2019.  https://doi.org/10.3390/ma12152490
  8. S. Han, B. K, Ju, and C. Yang, "Ultra-flexible and transparent electrodes with controllable crack length via metal-polymer hybrid nanostructure", Thin Solid Films, Vol. 757, pp. 139388(1)-139388(8), 2022.  https://doi.org/10.1016/j.tsf.2022.139388
  9. B. J. Kim, "Reliability of Metal Electrode for Flexible Electronics", J. Microelectron. Packag. Soc., Vol. 20, No. 4, pp. 1-6, 2013.  https://doi.org/10.6117/kmeps.2013.20.4.001
  10. J. Y. Park, W. J. Lee, H. J. Nam, and S. H. Choa, "Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics", J. Microelectron. Packag. Soc., Vol. 25, No. 4, pp. 25-34, 2018. 
  11. H. S. Jung, K. Eun, E. K. Lee, K. Y. Jung, S. H. Choi, and S. H. Choa, "Flexible durability of Ultra-Thin FPCB", J. Microelectron. Packag. Soc., Vol. 21, No. 4, pp. 69-76, 2014.  https://doi.org/10.6117/kmeps.2014.21.4.069
  12. S. M. Lee, J. H. Kwon, S. Kwon, and K. C. Choi, "A Review of Flexible OLEDs Toward Highly Durable Unusual Displays", IEEE Trans. Electron Devices, Vol. 64, No. 5, pp. 1922-1931, 2017.  https://doi.org/10.1109/TED.2017.2647964
  13. K. Chen, J. Ren, C. Chen, W. Xu, and S. Zhang, "Safety and effectiveness evaluation of flexible electronics materials for next generation wearable and implantable medical devices", Nano Today, Vol. 35, p. 100939, 2020. 
  14. S. H. Kwon and L. Dong, "Flexible sensors and machine learning for heat monitoring", Nano Energy, Vol. 102, pp. 107632(1)-107632(45), 2022.  https://doi.org/10.1016/j.nanoen.2022.107632
  15. T. Zhang, N. Liu, J. Xu, Z. Liu, Y. Zhou, Y. Yang, S. Li, Y. Huang, and S. Jiang, "Flexible electronics for cardiovascular healthcare monitoring", The Innovation, Vol. 4, No. 5, p. 100485, 2023. 
  16. K. D. Harris, A. L. Elias, and H. J. Chung, "Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies", J. Mater. Sci., Vol. 51, pp. 2771-2805, 2016.  https://doi.org/10.1007/s10853-015-9643-3
  17. S. W. Jin, Y. H. Lee, K. M. Yeom, J. Yun, H. Park, Y. R. Jeong, S. Y. Hong, G. Lee, S. Y. Oh, J. H. Lee, J. H. Noh, and J. S. Ha, "Highly Durable and Flexible Transparent Electrode for Flexible Optoelectronic Applications", ACS Appl. Mater. Interfaces, Vol. 10, No. 36, pp. 30706-30715, 2018.  https://doi.org/10.1021/acsami.8b10190
  18. J. H. Yoo, Y. Kim, M. K. Han, S. Choi, K. Y. Song, K. C. Chung, J. M. Kim, and J. Kwak, "Silver Nanowire-Conducting Polymer-ITO Hybrids for Flexible and Transparent Conductive Electrodes with Excellent Durability", ACS Appl. Mater. Interfaces, Vol. 7, No. 29, pp. 15928-15934, 2015.  https://doi.org/10.1021/acsami.5b03855
  19. K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, "Durable transparent carbon nanotube films for flexible device components", Thin Solid Films, Vol. 518, No. 23, pp. 6977-6983, 2010.  https://doi.org/10.1016/j.tsf.2010.07.026
  20. D. Koo, S. Jung, J. Seo, G. Jeong, Y. Choi, J. Lee, S. M. Lee, Y. Cho, M. Jeong, J. Lee, J. Oh, C. Yang, and H. Park, "Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes", Joule, Vol. 4, No. 5, pp. 1021-1034, 2020.  https://doi.org/10.1016/j.joule.2020.02.012
  21. H. Park, T. Kang, H. Kim, J. C. Kim, Z. Bao, and J. Kang, "Toughening self-healing elastomer crosslinked by metal-ligand coordination through mixed counter anion dynamics", Nat. Commun., Vol. 14, No. 1, pp.5026(1)-5026(10), 2023. 
  22. B. Kang, J. Yun, S. G. Kim, and M. Yang, "Adaptive Fabrication of a Flexible Electrode by Optically Self-Selected Interfacial Adhesion and Its Application to Highly Transparent and Conductive Film", Small, Vol. 9, No. 12, pp. 2111-2118, 2013.  https://doi.org/10.1002/smll.201201485
  23. K. Alzoubi, S. Lu, B. Sammakia, and M. Poliks, "Experimental and Analytical Studies on the High Cycle Fatigue of Thin Film Metal on PET Substrate for Flexible Electronics Application", IEEE Trans. Compon., Packaging Manuf. Technol., Vol. 1, No. 1, pp. 43-51, 2011.  https://doi.org/10.1109/TCPMT.2010.2100911
  24. B. J. Kim, "Reliability of Metal Electrode for Flexible Electronics", J. Microelectron. Packag. Soc., Vol. 20, No. 4, pp. 1-6, 2013.  https://doi.org/10.6117/kmeps.2013.20.4.001
  25. A. Laskarakis, S. Logothetidis, S. Kassavetis, and E. Papaioannou, "Surface modification of poly (ethylene terephthalate) polymeric films for flexible electronics applications", Thin Solid Films, Vol. 516, No. 7, pp. 1443-1448, 2008.  https://doi.org/10.1016/j.tsf.2007.03.170
  26. Y. Wang, Y. Wang, J. J. Chen, H. Guo, K. Liang, K. Marcus, Q. L. Peng, J. Zhang, and Z. S. Feng, "A facile process combined with inkjet printing, surface modification and electroless deposition to fabricate adhesion-enhanced copper patterns on flexible polymer substrates for functional flexible electronics", Electrochim. Acta, Vol. 218, No. 10, pp. 24-31, 2016.  https://doi.org/10.1016/j.electacta.2016.08.143
  27. P. Fabbri and M. Messori, "5-Surface Modification of Polymers: Chemical Physical, and Biological Routes", Modification of Polymer Properties, pp. 109-130, 2017. 
  28. S. J. Park, T. J. Ko, J. Yoon, M. W. Moon, K. H. Oh, and J. H. Han, "Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates", Appl. Surf. Sci., Vol. 427, No. Part B, pp. 1-9, 2018.  https://doi.org/10.1016/j.apsusc.2017.08.195
  29. M. G. Faraj, K. Ibrahim, and M. K. M. Ali, "PET as a plastic substrate for the flexible optoelectronic applications", Optoelectron. Adv. Mater. Rapid Commun., Vol. 5, No. 8, pp. 879-882, 2011. 
  30. V. Zardetto, T. M. Brown, A. Reale, and A. Di Carlo, "Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties", J. Polym. Sci. B Polym. Phys., Vol. 49, No. 9, pp. 638-648, 2011.  https://doi.org/10.1002/polb.22227
  31. M. Iqbal, D. K. Dinh, Q. Abbas, M. Imran, H. Sattar, and A. Ul Ahmad, "Controlled surface wettability by plasma polymer surface modification", Surfaces, Vol. 2, No. 2, pp. 349-371, 2019.  https://doi.org/10.3390/surfaces2020026
  32. C. Aleman, G. Fabregat, E. Armelin, J. J. Buendia, and J. Llorca, "Plasma surface modification of polymers for sensor applications", J. Mater. Chem. B, Vol. 6, No. 41, pp. 6515-6533, 2018.  https://doi.org/10.1039/C8TB01553H
  33. I. Y. Yang, S. W. Myung, H. S. Choi, and I. H. Kim, "Surface Modification of Polyurethane Film Using Atomospheric Pressure Plasma", Polymers, Vol. 29, No. 6, pp. 581-587, 2005. 
  34. S. K. Hong, I. S. You, I. T. Song, and H. S. Lee, "Material-Independent Surface Modification Inspired by Mussel-Adhesion", Polymer Sci. Technol., Vol. 23, No. 4, pp. 396-406, 2012. 
  35. D. Y. Im, "Study on Enhancement of Adhesion between Electrode and Substrate Through Surface Modification of Flexible/Stretchable Substrate", M. S. thesis, Andong National University Graduate School, Andong, KR, 2024. 
  36. G. H. Kim, H. Y. Hwang, and T. An, "In Situ BSA (Bovine Serum Albumin) Assisted Electroless Plating Method with Superior Adhesion Property", Adv. Mater. Interfaces, Vol. 9, No. 2, p. 2101203, 2022.