• Title/Summary/Keyword: Durability Analysis

Search Result 1,637, Processing Time 0.045 seconds

Vibration Analysis and Durability Evaluation of a Sign Frame on a Bridge (교량부속구조물에 대한 진동해석과 피로내구성평가)

  • Lee, Sang-Hun;Endo, Takao;Ishikawa, Masami;Han, Yeon-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.317-320
    • /
    • 2008
  • Between traffic-induced vibration of a bridge and fatigue damage of its attached structures are very closely related. But any evaluation and design method considering the fatigue damage is not established yet. As an experimental method of evaluation of the fatigue durability, a method based on cumulative damage using a stress range histogram has been often used. However, to use the method, the fatigue durability of unmeasured points could not be evaluated. Then, in this paper, dynamic analysis of a sign frame on a bridge is carried out based on the vibration data of the bridge. And model optimization was performed for good agreement between measured responses and computed responses. As a result, we could get stress range histograms and calculate fatigue durability of unmeasured points.

  • PDF

CAE Procedure of Engine Balance Shaft Housing for Prediction of Durability (엔진 밸런스 샤프트 하우징의 내구성 평가를 위한 CAE 절차 개발)

  • Choi, Hang-Jip
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.133-138
    • /
    • 2007
  • The balance shaft housing in the recent engines tends to have the high cycle fatigue crack caused by increased engine power. In this paper, a CAE procedure is introduced to predict the durability of the balance shaft housing. The procedure is performed through two analysis steps. In the first step, the multibody dynamic simulation is used to obtain more accurate loading boundary conditions applied to the finite element model for the following step. Next, the finite element analysis is performed to predict the durability of the balance shaft housing through the calculation of the safety factor. Through this CAE procedure, the revised balance shaft housing was developed to improve the durability. And the durability of the housing was confirmed experimentally.

FATIGUE DURABILITY ASSESSMENT OF FULL-BEAD OF MLS GASKET USING FINITE ELEMENT ANALYSIS

  • CHO S.-S.;HAN B. K.;LEE J.-H.;CHANG H.;KIM B. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.513-517
    • /
    • 2005
  • A full-bead of multi-layer-steel engine head gasket, taking charge of the dynamic sealing of combustion chamber, is susceptible to fatigue failure. The fatigue durability of full-bead was assessed with the finite element analysis results and the high-cycle multi-axial fatigue theory. The assessment aimed to reveal the effects of the forming parameters and dimensions of full-bead. The results show that the selection of embossing parameters producing less deformation of bead plate is beneficial for the improvement of durability while the flatting has marginal influence. The fatigue durability also improves with the increase in the width of full-bead and the radial length of bore-side flat region. However, the dimensional effects are limited due to the occurrence of snap-through.

A Study on the Comparative Analysis of Chloride Penetration Durability Design Program of Reinforced Concrete Structures. (RC구조물 염해 내구성 설계 평가 프로그램 문헌 비교연구)

  • Lee, Hyung-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.259-260
    • /
    • 2012
  • As RC structures in the marine environment rapidly increase, the interest and the importance of Chloride Penetration durable design have been growing. However, there is hardly any domestic Chloride Penetration durability of RC structures designed analysis programs. Currently, Chloride Penetration durable design method is studied and launched actively as a program in the United States, Europe, Japan and etc., but it is limited to Chloride Penetration durability of RC structures excluded from maintenance construction. Also, the level of dependence on the foreign technology is high; the foreign program is imported and used when needed. The main objective is to compare and to evaluate with the durability assessment program and several conditions when considering the design of Chloride Penetration durability through the programs developed abroad.

  • PDF

Durability Based Design for Hydroforming process of Rear Suspension (내구성을 고려한 후륜현가 장치의 하이드로포밍 공정 설계)

  • Kim, H.Y.;Oh, I.S.;Go, J.M.;Lee, D.J.;Cho, W.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.269-272
    • /
    • 2006
  • The hydroforming processing is a relatively new technology in comparison with conventional stamping process. The hydroforming processing makes torsion beam in rear suspension of automobile. The durability of torsion beam is very important characteristic that operate in an automobile. In order to optimize the hydroforming process and satisfy the durability, the hydroforming simulation which could control an axial compression and high internal pressure with computer simulation has to be operated. This paper is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam of suspension system. The result from finite element analysis shows that the forming and the durability are optimized. If there is effect of First pressure in hydroforming processing that gap is in the die tool, the prototype of tube is not satisfied on the durability test.

  • PDF

Durability Analysis due to Design Shape of Pinion Gear (자동차용 피니언 기어의 설계 형상에 따른 내구성 해석)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.16-21
    • /
    • 2020
  • The structural analyses were conducted with three models of pinion gears connected to the rack gear which is driven by the steering axle at an automobile. Three models 1, 2 and 3 are designed as the different pinion gears due to the vehicle type. The lower the value of maximum stress, the better the durability of model. Model 3 has the best durability among three models. Models 1 and 2 are expected to require the adjustment in order to improve the durability better. By the utilization of this study result, it is thought to apply at designing the pinion gear with durability at the automobile.

Tube Hydroforming Process Design of Torsion Beam type Rear Suspension Considering Durability (내구성을 고려한 토션빔형 후륜 현가장치의 튜브 하이드로포밍 공정 설계)

  • Lim, H.T.;Oh, I.S.;Ko, J.M.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.201-209
    • /
    • 2007
  • Generally, the forming process of suspension system parts have been considered only considered with the formability and have not been considered with the durability of suspension system. But the durability of suspension system is very important characteristic for the dynamic performance of vehicle. Therefore, the suspension system should be manufactured to consider the durability as well as the formability. This paper is about an optimum forming process design with the effect of section properties to consider the roll durability of torsion beam type suspension. In order to determine the tube hydroforming process for the satisfaction the roll durability, the stamping and hydroforming simulation by finite element method were performed. And the results from finite element analysis and roll durability examination showed the tube hydroforming process of torsion beam is optimized as satisfying the durability performance.

Dynamic stress analysis of the railway vehicle using ADAMS/Rail and ADAMS/Durability (ADAMS/Rail과 ADAMS/Durability를 이용한 철도차량의 동응력 해석)

  • Cho Yon-Ho;Lee Kang-Wun;Park Gil-Bae;Choi Jung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.573-578
    • /
    • 2004
  • Rotem has chosen ADAMS/Rail as the next generation analysis tool, to improve the capability and accuracy of the analysis ability. The dynamic performances of the railway vehicle, which is designed and manufactured by Rotem, have been analyzed and simulated using ADAMS/Rail. In this paper, Dynamic stress of bogie frame on running track is analyzed and compared with the data of real vehicle test. It is performed using ADAMS/AutoFlex and ADAMS/Durability.

  • PDF

Analysis on Durability Performance of Spot Welding by the Status of Over-Slam Bumper in Hood System (후드 오버슬램범퍼 조립 상태에 따른 점용접의 내구성능 영향 분석)

  • Lee, Hyuk
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • Purpose: Recently, Issues on security for vehicles are getting increased all around the world. Especially, hood panel needs to be thinner for the protection of pedestrians. But thinner panel makes durability get worse. So, it is needed to satisfy both of them. Methods: Durability effectiveness will be studied because properties and assembly allowance of over-slam bumper mostly affects durability of hood panel. Overlap of over-slam bumper can be made in production line and it can affect durability of spot welding in hood inner panel. Daguchi method is used to catch the condition in which load gets smaller and location, hardness and quantity of overlap are selected to be factors. Durability effectiveness is analyzed with the factors. Result: the mechanism that affects on spot welding is identified. The test was conducted in both open/close and driving condition and the relation between both conditions is analyzed. Conclusion: The test contributed to durability of hood panel with optimization of over-slam bumper.

Durability Analysis by Shape of Brake Disk Structure (브레이크 디스크 구조 형상별 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • This study investigates life, damage and durability through the analyses of fatigue load and vibration on disk brake models of A, B and C. Maximum equivalent stress is happened at the inside of disk brake on these models. As there are A, B and C models by order of life, model A has the most stable strength on fatigue analysis, The deformations at 3 kinds of models become nearly same on natural frequency analysis. The maximum total deformation and equivalent stress is shown at 1617Hz by harmonic vibration analysis on these models. As there are A, B and C models by order of deformation and stress, model A becomes lowest and safest. This study result can be effectively utilized with the design of brake disk in order to improve durability and prevention against its fatigue damage and vibration.