• Title/Summary/Keyword: Ductile fiber reinforced cementitious composites (DFRCC)

Search Result 10, Processing Time 0.023 seconds

Experimental Investigation of Shear Behavior of Reinforced Concrete Beam Repaired with DFRCC at Cover Thickness

  • Kim Jang-Ho Jay;Jun Kyung-Suk;Bae Byung-Won;Lim YunMok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.577-580
    • /
    • 2004
  • Recently, DFRCCs (Ductile Fiber Reinforced Cementitious Composites), materials with remarkable ductility when compared to ordinary fiber-reinforced concrete (FRC), have been developed and studied actively in the US, Japan, and many European countries. The transformation of failure behavior from brittle to ductile is achieved by incorporating with fracture mechanics concept especially micro-mechanical models approach of cementitious composite materials in manufacturing ordinary fiber-reinforced composites. The purpose of this study is to accurately understand the shear behavior of DFRCC repaired RC beams. Using a four-point bending test, the shear strengths and shear stress-deflection relations of DFRCC repaired RC specimens are obtained. The results show that DFRCC can be effectively used for repairing materials for concrete structures.

  • PDF

Evaluation on the Durability of Ductile Fiber Reinforced Cementitious Composites(DFRCC) (고인성 섬유보강 시멘트 복합체의 내구성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Park, Jung-Jun;Kang, Su-Tae;Kang, Hyun-Jin;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.535-536
    • /
    • 2009
  • This study was carry out to evaluate the durability of Ductile Fiber Reinforced Cementitious Composites(DFRCC) according to W/B ratio(30, 40, 50%). The results is showing that DFRCC outstandingly improved to compare to plain concrete for the resistance of chloride ion penetration and rapid freezing and thawing

  • PDF

An Experimental Study for Bond Stress between DFRCC and Carbon FRP Plank Used as a Permanent Formwork (영구거푸집으로 활용한 탄소섬유 FRP 판과 DFRCC 사이의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1687-1694
    • /
    • 2014
  • Recently FRP of carbon fibers is utilized as a repairing and reinforcing material for concrete structures. In this study, the bond performance between CFRP planks and ductile fiber reinforced cementitious composites was evaluated in order to develop a new system of concrete bridge deck to take advantage of the FRP planks of carbon fiber using as a permanent formwork. In order to strengthen the bonding between the FRP and cast-in-place concrete, an epoxy resin circulated in the market generally was fitted with a silica sand. The bond stress of ordinary concrete appeared in 2.11~5.43MPa and the bond stress of ductile fiber reinforced cementitious composites DC1 (RF4000) and DC2 (PP) respectively were 3.91~5.60MPa, 2.92~5.21MPa and the average bond stress of DC3 (RF4000+RSC15) and DC4 (PP+RSC15) were 4.80~5.58MPa, 5.57~5.89MPa.

An Experimental Study on the Engineering Properties of Ductile Concrete Using PVA Fibers with Sand-Aggregate Ratio (잔골재율에 따른 PVA섬유를 사용한 고인성 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Min, Won-Gyoo;Hwang, Moon-Gyu;Youn, Hyen-Do;Nam, Jae-Hyun;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.389-392
    • /
    • 2006
  • In this study, I examined hardening and non-hardening of the DFRCC (Ductile Fiber Reinforced Cementitious Composites) according to sand-aggregate ratio and the diameter of PVA fiber to develope PVA fiber reinforced concrete with the feature of DFRCC. As a result of this study, the fresh properties of DFRC is similar regardless of sand-aggregate ratio. The bending stress of DFRC also increased as the sand-aggregate ratio increased. And the bending stress-displacement was the most stable when the PVA $100{\mu}m$ was used regardless of sand-aggregate ratio.

  • PDF

An Experimental Study on the Influence of Maximum Size of Coarse Aggregate on the Properties of Ductile Concrete using PVA Fibers (PVA섬유를 사용한 고인성 콘크리트의 특성에 미치는 굵은골재 최대치수의 영향에 관한 실험적 연구)

  • Kim, Jong-Hyun;Hwang, Moon-Gyu;Kim, Jae-Hwan;Nam, Jae-Hyun;Lee, Sang-Soo;Kim, Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.385-388
    • /
    • 2006
  • In this study, I examined hardening and non-hardening of the DFRCC (Ductile Fiber Reinforced Cementitious Composites) according to maximum size of coarse aggregate and the diameter of PVA (Poly Vinyl Alcohol) to develope PVA fiber reinforced concrete with the feature of DFRCC. As a result of this study, the fresh properties is similar regardless of maximum size of coarse aggregate. The bending stress and bending stress-displacement of DFRC showed big differences according to maximum size of coarse aggregate and diameter.

  • PDF

An Experimental Study on Mechanical Properties of Ductile Concrete with the Kinds of Aggregate (골재종류에 따른 고인성 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Han Byung-chan;Yang Il-seung;Park Wan-shin;Lim Seung-chan;Morii Naoharu;Youn Hyun-do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.61-64
    • /
    • 2005
  • Concrete is one of the principal materials for the structure and it is widely used all over the world, but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property, Ductile Fiber Reinforced Cementitious Composites (DFRCC) have been developed, and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This paper is to estimate experimentally the mechanical properties of ductile concrete with the kinds of used fine and coarse aggregate for purpose of development of high ductile concrete mixing coarse aggregate. As the results, ductile concrete mixed coarse aggregate showed the displacement-hardening behavior under bending load similar to DFRCC, and its compressive and bending performance varied according to the kinds of used coarse aggregate.

  • PDF

Simple Bond Stress and Slip Relationship between CFRP Plank and Cast-in-Place DFRCC (탄소섬유 FRP판과 현장타설 고인성섬유보강콘크리트 사이의 단순 부착슬립 관계)

  • Yoo, Jun-Sang;Yoo, Seung-Woon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • Bond stress between cast-in-place ductile fiber reinforced cementitious composites and CFRP plank were experimentally analyzed. As failure shape, the mixture of failure between CFRP plank and epoxy, and failure between concrete and epoxy was shown. In case of RFCON from the suggested simple bond slip relationship, the maximum average bond stress was 5.39MPa, the initial slope was 104.09MPa/mm, and the total slip length was 0.19mm. PPCON showed the maximum average bond stress of 4.31MPa, the initial slope of 126.67MPa/mm, and the total slip length of 0.26mm, while RFCON+ appeared to have 8.71MPa, 137.69MPa/mm, 0.16mm. PPCON+ had 6.19MPa maximum average bond stress, 121.56MPa/mm initial slope, and 0.34mm total slip length. To comprehend the behavior of composite structure of FRP and concrete, local bond slip relation is necessary, and thus a simple relation is suggested to be easily applied on hybrid composite system.

An Experimental Study for Failure Behavior of Composite Beams with DFRCC and FRP Plank with Rib (리브를 갖는 FRP 판과 고인성섬유보강콘크리트로 이루어진 합성보의 파괴거동에 대한 실험적 연구)

  • Kang, Ga-Ram;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • DFRCC (ductile fiber reinforced cementitious composites), which are a significantly improved ductile material compared to conventional concrete, were evaluated as a new construction material with a high potential applications to concrete structures for a range of purposes. In this study, experiments on the failure behavior of composite beams with a DFRCC and FRP (fiber reinforced polymer) plank with a rib used as permanent formwork and tensile reinforcement were carried out. A normal concrete and a fiber reinforced concrete with PVA series of RF4000 and the PP series of PP-macro were used for comparison, and each RF4000+RSC15 and PP-macro+RSC15 was tested by producing composite beams. The experimental results of the FRP plank without a sand coating showed that sliding failure mode between the FRP plank and concrete started from a flexural crack at the beam center; therefore it is necessary for the FRP plank to be coated with sand and the effect of the fiber to failure mode did not appear to be huge. The experiment of the FRP plank with a sand coating showed that both 1200mm and 2000mm allowed sufficient bonding between the concrete and FRP plank. The maximum load of the fiber reinforced concrete was higher than that of normal concrete and the case which a series of PP fiber was mixed showed the highest value. The crack latency caused by the fibers led to composite action with a FRP rib.