• Title/Summary/Keyword: Ductile Fracture

Search Result 529, Processing Time 0.023 seconds

Effect of Austempering Temperature on the Mechanical Properties and Fracture Characteristic of Austemped Ductile Cast Iron (오스템퍼드 구상흑연 주철의 기계적 성질 및 파괴특성에 미치는 오스템퍼링 온도의 영향)

  • Kang, C.Y.;Kim, C.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.298-306
    • /
    • 1994
  • This study was performed to investigation the effect of austempering temperature on the mecanical properties and fracture Characteristic of the ductile cast iron with contains Cu and Mo. The obtained results of this study were as follows; Microstructure of austemped ductile cast iron obtained by austempering were low bainite with some martensite at $250^{\circ}C$, mixture of low and upper bainite at $300^{\circ}C$ and upper bainite at $350^{\circ}C$. With increasing austempering temperature, yield strength, tensile strength and hardness decreased, while the elongation and impact absorption energy increased. With increasing austempering temperature, fracture toughness value increased and mainly controlled by bolume fraction of retained austenite. The volume fraction of retained austenite increased and the fracture surface obtained fibrous and dimple with increasing austempering temperature.

  • PDF

Determination of ductile fracture parameters by notched specimen test (노치시편을 이용한 연성파괴이론 상수 결정)

  • Kim, S.W.;Kwon, Y.C.;Kwon, Y.N.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.254-257
    • /
    • 2006
  • In the last few years, ductile fracture criteria based on various hypotheses have been developed and utilized with FEM to predict forming failure. The accurate deformation analysis by the FEM and the decision of damage parameters are the most important factors in these approaches. In this paper, several conventional integral forms of fracture criteria were introduced and the test method to determine damage parameters by using notched specimen was suggested. Based on the results, damage parameters obtained under the different stress system (tensile and compression) are compared and analyzed.

  • PDF

Numerical Ductile Tearing Simulation of Circumferential Cracked Pipe Tests under Dynamic Loading Conditions

  • Nam, Hyun-Suk;Kim, Ji-Soo;Ryu, Ho-Wan;Kim, Yun-Jae;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1252-1263
    • /
    • 2016
  • This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

A Study of Thermal Shock Characteristics on the Joints of Automotive Application Component using Sn-3Ag-0.5Cu Solder (Sn-3Ag-0.5Cu계 솔더를 이용한 자동차 전장 부품 접합부의 열충격 특성에 관한 연구)

  • Jeon, Yu-Jae;Son, Sun-Ik;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.611-616
    • /
    • 2010
  • This study investigated the characteristics of fracture behavior and mode on solder joints before and after thermal shock test for automotive application component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as lead-free solder. The shear strength was decreased with thermal cycle number, after 432 cycles of thermal shock test. In addition, fracture mode was verified to ductile, brittle fracture and base materials fracture such as different kind fractured mode using SEM and EDS. Before the thermal shock, the fractured mode was found to typical ductile fracture in solder layer. After thermal shock test, especially, Ag was found on fractured portion as roughest surface. Moreover, it occurred delamination between a PCB and a Cu land. Before thermal shock test, most of fractured mode in solder layer has dimples by ductile fracture. However, after thermal shock test, the fractured mode became a combination of ductile and brittle fracture, and it also could find that the fracture behavior varied including delamination between substrate and Cu land.

Ductile Fracture of a Marine Structural Steel based on HC-DSSE Combined Fracture Strain Formulation (HC-DSSE 조합 파단 변형률 정식화에 기반한 선박해양 구조물용 강재의 연성 파단 예측)

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Kim, Younghyn;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.82-93
    • /
    • 2019
  • In this paper, the ductile fracture criteria for a marine structural steel (EH36) are presented and validated. The theoretical background of the recently developed Hosford-Coulomb (HC) fracture strain model and the DSSE fracture strain model which was developed to apply to the shell elements is described. In order to accurately estimate the flow stress in the large strain range up to the fracture, the material constants for the combined Swift-Voce constitutive equation were derived by the numerical analyses of the smooth and notched specimens made from the EH36 steel. As a result of applying the Swift-Voce flow stress to the other notched specimen model, a very accurate load - displacement curve could be derived. The material constants of the HC fracture strain and DSSE fracture strain models were independently calibrated based on the numerical analyses for the smooth and notch specimen tests. The user subroutine (VUMAT of Abaqus) was developed to verify the accuracy of the combined HC-DSSE fracture strain model. An asymmetric notch specimen was used as verification model. It was confirmed that the fracture of the asymmetric specimen can be accurately predicted when a very small solid elements are used together with the HC fracture strain model. On the other hand, the combined HC-DSSE fracture strain model can predict accurately the fracture of shell element model while the shell element size effect becomes less sensitive.

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

Effects of surface hardening by using $CO_2$ laser defocussed beam on the fatigue resistance of ductile irons ($CO_2$ 레이저 분산빔에 의한 표면경화가 구상흑연주철의 피로특성에 미치는 영향)

  • 박근웅;한유희;이상윤
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.42-51
    • /
    • 1999
  • This study has been performed to investigate into some effects of the output power and traverse speed of laser beam on the microstructures, hardness and fatigue resistance of the ductile iron surface-hardened by $CO_2$ laser defocussed beam. Optical micrographs have shown that with increasing the output power and decreasing the traverse speed, the martensite was coarsened and some retained austenite were appeared in ductile iron. The microstructures of hardening zone were composed of bull's eye and some nodular graphite dissolved structures by the effect of self quenching. Fatigue fracture characteristics of ductile iron have appeared in the high stress and low stress ranges. The fracture initiated at nodular graphites in the surface hardened layer due to the stress concentration caused by a notch effect. The interior graphite nodules were broken away or popped out during crack propagation. Fatigue test has shown that values of fatigue strength considerably increased with increasing output power at a given traverse speed.

  • PDF

Study on the Burr Formation and Fracture at the Exit Stage in Orthogonal Cutting (2차원절삭에서 공구이탈시 발생하는 버(Burr)와 파단에 관한 연구)

  • 고성림
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1172-1182
    • /
    • 1993
  • In orthogonal machining a quantitative model for burr formation process and fracture when tool exits workpiece is proposed. When no fracture during burr formation burr formation process is divided by three parts; Initiation, Development and Final burr formation. According to the properties of workpiece fracture will happen or not after initiation of burr formation. Considering the fact that fracture depends on the ductility of workpiece, the fracture strain obtained from ductile fracture criterion is used for prediction. It is verified that the fracture strain from tension test can be used as fracture criterion in burr formation without large error. For detailed observation of burr formation an experimental stage for micro orthogonal cutting inside SEM (Scanning Electron Microscope) is built. Through the comparison between model prediction and experimental result from orthogonal machining in milling machine the model is verified.

Estimation of Fracture Resistance Curves of Nuclear Materials Using Small Punch Specimen (소형펀치 시편을 이용한 원자력 재료의 파괴저항곡선 예측)

  • Chang, Yoon-Suk;Kim, Jong-Min;Choi, Jae-Boong;Kim, Min-Chul;Lee, Bong-Sang;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.70-76
    • /
    • 2007
  • Elastic-plastic fracture mechanics is popularly used for integrity evaluation of major components, however, it is not easy to extract standard specimens from operating facility. This paper examines how ductile fracture toughness is characterized by a small punch testing technique in conjunction with finite element analyses incorporating a damage model. At first, micro-mechanical parameters constituting Rousselier model are calibrated for typical nuclear materials using both estimated and experimental load-displacement (P-$\delta$) curves of miniaturized specimens. Then, fracture resistance (J-R) curves of relatively larger standard CT specimens are predicted by finite element analyses employing the calibrated parameters and compared with corresponding experimental ones. It was proven that estimated results by the proposed method using small punch specimen is promising and might be used as a useful tool for ductile crack growth evaluation.