• Title/Summary/Keyword: Duality theorems

Search Result 48, Processing Time 0.024 seconds

ON MULTIOBJECTIVE GENERALIZED SYMMETRIC DUAL PROGRAMS WITH $\rho-(\eta,0)$-INVEXITY

  • Nahak, C.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.797-804
    • /
    • 1998
  • A pair of multiobjective generalized symmetric dual non-linear programming problems and weak strong and converse dual-ity theorems for these problems are established under generalized $\rho-(\eta,0)$-invexity assumptions. Several known results are obtained as special cases.

STRONG CONVERGENCE THEOREMS BY VISCOSITY APPROXIMATION METHODS FOR ACCRETIVE MAPPINGS AND NONEXPANSIVE MAPPINGS

  • Chang, Shih-Sen;Lee, H.W. Joseph;Chan, Chi Kin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.59-68
    • /
    • 2009
  • In this paper we present an iterative scheme for finding a common element of the set of zero points of accretive mappings and the set of fixed points of nonexpansive mappings in Banach spaces. By using viscosity approximation methods and under suitable conditions, some strong convergence theorems for approximating to this common elements are proved. The results presented in the paper improve and extend the corresponding results of Kim and Xu [Nonlinear Anal. TMA 61 (2005), 51-60], Xu [J. Math. Anal. Appl., 314 (2006), 631-643] and some others.

  • PDF

SOME GEOMERTIC SOLVABILITY THEOREMS IN TOPOLOGICAL VECTOR SPACES

  • Ben-El-Mechaiekh, H.;Isac, G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.273-285
    • /
    • 1997
  • The aim of this paper is to present theorems on the exitence of zeros for mappings defined on convex subsets of topological vector spaces with values in a vector space. In addition to natural assumptions of continuity, convexity, and compactness, the mappings are subject to some geometric conditions. In the first theorem, the mapping satisfies a "Darboux-type" property expressed in terms of an auxiliary numerical function. Typically, this functions is, in this case, related to an order structure on the target space. We derive an existence theorem for "obtuse" quasiconvex mappings with values in an ordered vector space. In the second theorem, we prove the existence of a "common zero" for an arbitrary (not necessarily countable) family of mappings satisfying a general "inwardness" condition againg expressed in terms of numerical functions (these numerical functions could be duality pairings (more generally, bilinear forms)). Our inwardness condition encompasses classical inwardness conditions of Leray-Schauder, Altman, or Bergman-Halpern types.

  • PDF

THREE CONVEX HULL THEOREMS ON TRIANGLES AND CIRCLES

  • Kalantari, Bahman;Park, Jong Youll
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.787-794
    • /
    • 2014
  • We prove three convex hull theorems on triangles and circles. Given a triangle ${\triangle}$ and a point p, let ${\triangle}^{\prime}$ be the triangle each of whose vertices is the intersection of the orthogonal line from p to an extended edge of ${\triangle}$. Let ${\triangle}^{{\prime}{\prime}}$ be the triangle whose vertices are the centers of three circles, each passing through p and two other vertices of ${\triangle}$. The first theorem characterizes when $p{\in}{\triangle}$ via a distance duality. The triangle algorithm in [1] utilizes a general version of this theorem to solve the convex hull membership problem in any dimension. The second theorem proves $p{\in}{\triangle}$ if and only if $p{\in}{\triangle}^{\prime}$. These are used to prove the third: Suppose p be does not lie on any extended edge of ${\triangle}$. Then $p{\in}{\triangle}$ if and only if $p{\in}{\triangle}^{{\prime{\prime}}$.

RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE

  • De Lima, Henrique Fernandes
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • As a suitable application of the well known generalized maximum principle of Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed with bounded mean curvature in the $(n+1)$-dimensional hyperbolic space $\mathbb{H}^{n+1}$. In our approach, we explore the existence of a natural duality between $\mathbb{H}^{n+1}$ and the half $\mathcal{H}^{n+1}$ of the de Sitter space $\mathbb{S}_1^{n+1}$, which models the so-called steady state space.

STRONG CONVERGENCE THEOREM FOR UNIFORMLY L-LIPSCHITZIAN MAPPINGS IN BANACH SPACES

  • Qin, Xiaolong;Kang, Shin Min;Shang, Meijuan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.293-299
    • /
    • 2008
  • In this paper, we prove strong convergence theorems for a finite family of uniformly L-Lipschitzian mappings by a cyclic iterative algorithm in the framework of Banach spaces. Our results improve and extend the recent ones announced by many others.

  • PDF

Lp-ESTIMATES FOR THE ${\bar{\partial}}$-EQUATION WITH EXACT SUPPORT ON q-CONVEX INTERSECTIONS

  • Khidr, Shaban
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • We construct bounded linear integral operators that giving solutions to the ${\bar{\partial}}$-equation in $L^p$-spaces and with compact supports on a q-convex intersection ($q{\geq}1$) with ${\mathcal{C}}^3$ boundary in $K{\ddot{a}}hler$ manifolds, and we apply it to obtain a Hartogs-like extension theorems for ${\bar{\partial}}$-closed forms for some bidegree.

THE DOUBLE FUZZY ELZAKI TRANSFORM FOR SOLVING FUZZY PARTIAL DIFFERENTIAL EQUATIONS

  • Kshirsagar, Kishor A.;Nikam, Vasant R.;Gaikwad, Shrikisan B.;Tarate, Shivaji A.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.177-196
    • /
    • 2022
  • The Elzaki Transform method is fuzzified to fuzzy Elzaki Transform by Rehab Ali Khudair. In this article, we propose a Double fuzzy Elzaki transform (DFET) method to solving fuzzy partial differential equations (FPDEs) and we prove some properties and theorems of DFET, fundamental results of DFET for fuzzy partial derivatives of the nth order, construct the Procedure to find the solution of FPDEs by DFET, provide duality relation of Double Fuzzy Laplace Transform (DFLT) and Double Fuzzy Sumudu Transform(DFST) with proposed Transform. Also we solve the Fuzzy Poisson's equation and fuzzy Telegraph equation to show the DFET method is a powerful mathematical tool for solving FPDEs analytically.