RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE

HENRIQUE FERNANDES DE LIMA

ABSTRACT. As a suitable application of the well known generalized maximum principle of Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed with bounded mean curvature in the (n+1)-dimensional hyperbolic space \mathbb{H}^{n+1} . In our approach, we explore the existence of a natural duality between \mathbb{H}^{n+1} and the half \mathcal{H}^{n+1} of the de Sitter space \mathbb{S}_1^{n+1} , which models the so-called steady state space.

1. Introduction

In this paper, we are interested in the study of complete non-compact hypersurfaces immersed with bounded mean curvature in the (n+1)-dimensional hyperbolic space \mathbb{H}^{n+1} . Before giving details on our work, we present a brief outline of the main results related to our ones.

In [1], L. J. Alías and M. Dajczer studied complete surfaces properly immersed in \mathbb{H}^3 which are contained between two horospheres, obtaining a Bernstein-type result for the case of constant mean curvature $-1 \le H \le 1$.

The author and A. Caminha have studied in [3] complete vertical graphs of constant mean curvature in \mathbb{H}^{n+1} . Under appropriate restriction on the growth of the height function, they obtained necessary conditions for the existence of such a graph. Furthermore, for complete surfaces of nonnegative Gaussian curvature, they obtained a Bernstein-type theorem in \mathbb{H}^3 .

More recently, by applying a technique of S. T. Yau [13], the author jointly with F. E. C. Camargo and A. Caminha [2] have also obtained Bernstein-type results in \mathbb{H}^{n+1} .

Here, under an appropriated restriction on the normal angle of the hypersurface (that is, the angle between the Gauss map of the hypersurface and the unitary vector field which determines on \mathbb{H}^{n+1} a codimension one foliation by horospheres; see Section 3), we obtain rigidity theorems concerning to a complete hypersurface immersed with bounded mean curvature in \mathbb{H}^{n+1} . In our approach, we explore the existence of a natural duality between \mathbb{H}^{n+1} and the

Received May 4, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C42; Secondary 53B30, 53C50. Key words and phrases. hyperbolic space, complete hypersurfaces, mean curvature, Gauss map.

The author was partially supported by FAPESQ/CNPq/PPP, Brazil.

half \mathcal{H}^{n+1} of the de Sitter space \mathbb{S}_1^{n+1} , which models the so-called *steady state* space (cf. Sections 2 and 3).

We prove the following (cf. Theorem 3.3; see also Corollaries 3.5 and 3.6):

Let $\psi: \Sigma^n \to \mathbb{H}^{n+1}$ be a complete hypersurface, with bounded second fundamental form A. Suppose that the (not necessarily constant) mean curvature H of Σ^n is such that $0 \le H \le 1$. If Σ^n is under a horosphere of \mathbb{H}^{n+1} and its normal angle θ satisfies $\cos \theta \ge \sup_{\Sigma} H$, then Σ^n is a horosphere and the image of its Lorentz Gauss map is exactly a hyperplane of \mathcal{H}^{n+1} .

We want to point out that our restriction on the normal angle of the hypersurface is motivated by a gradient estimate due to R. López and S. Montiel [6] (for more details, see Remark 3.4).

Furthermore, by applying a classical result due to A. Huber [4] concerned with parabolic surfaces, we also prove the following (cf. Theorem 3.7):

Let $\psi: \Sigma^2 \to \mathbb{H}^3$ be a complete surface of nonnegative Gaussian curvature and with (not necessarily constant) mean curvature $0 \le H \le 1$. If the normal angle θ of Σ^2 satisfies $\cos \theta \ge H$, then Σ^2 is a horosphere and the image of its Lorentz Gauss map is exactly a plane of \mathcal{H}^3 .

2. The steady state space \mathcal{H}^{n+1}

In order to study the geometry of the Gauss map of a hypersurface immersed in the hyperbolic space, we need some preliminaries of Lorentz geometry.

Let \mathbb{L}^{n+2} denote the (n+2)-dimensional Lorentz-Minkowski space $(n \geq 2)$, that is, the real vector space \mathbb{R}^{n+2} endowed with the Lorentz metric defined by

$$\langle v, w \rangle = \sum_{i=1}^{n+1} v_i w_i - v_{n+2} w_{n+2}$$

for all $v, w \in \mathbb{R}^{n+2}$. We define the (n+1)-dimensional de Sitter space \mathbb{S}_1^{n+1} as the following hyperquadric of \mathbb{L}^{n+2} :

$$\mathbb{S}_1^{n+1} = \left\{ p \in L^{n+2}; \langle p, p \rangle = 1 \right\}.$$

The induced metric from \langle,\rangle makes \mathbb{S}_1^{n+1} into a Lorentz manifold with constant sectional curvature one. Moreover, if $p \in \mathbb{S}_1^{n+1}$, we can put

$$T_p\left(\mathbb{S}_1^{n+1}\right) = \left\{v \in \mathbb{L}^{n+2}; \langle v, p \rangle = 0\right\}.$$

Let $a \in \mathbb{L}^{n+2}$ be a non-zero null vector in the past half of the null cone (with vertex in the origin), that is, $\langle a, a \rangle = 0$ and $\langle a, e_{n+2} \rangle > 0$, where $e_{n+2} = (0, \ldots, 0, 1)$. Then the open region of the de Sitter space \mathbb{S}_1^{n+1} , given by

$$\mathcal{H}^{n+1} = \left\{ x \in \mathbb{S}_1^{n+1}; \langle x, a \rangle > 0 \right\}$$

is the so-called *steady state* space. Observe that \mathcal{H}^{n+1} is extendible and, so, non-compact, being only half a de Sitter space. Its boundary, as a subset of \mathbb{S}_1^{n+1} , is the null hypersurface

$$\left\{x \in \mathbb{S}_1^{n+1}; \langle x, a \rangle = 0\right\},$$

whose topology is that of $\mathbb{R} \times \mathbb{S}^{n-1}$ (cf. [7]).

Now, we shall consider in \mathcal{H}^{n+1} the timelike field

$$\mathcal{K} = \langle x, a \rangle x - a.$$

We easily see that

$$\overline{\nabla}_V \mathcal{K} = \langle x, a \rangle V \text{ for all } V \in \mathfrak{X}(\mathcal{H}^{n+1}),$$

that is, K is closed and conformal field on \mathcal{H}^{n+1} (cf. [5], Section 2). Then, from Proposition 1 of [9], we have that the *n*-dimensional distribution \mathcal{D} defined on \mathcal{H}^{n+1} by

$$p \in \mathcal{H}^{n+1} \longmapsto \mathcal{D}(p) = \left\{ v \in T_p \mathcal{H}^{n+1}; \langle \mathcal{K}(p), v \rangle = 0 \right\}$$

determines a codimension one spacelike foliation $\mathcal{F}(\mathcal{K})$ which is oriented by \mathcal{K} . Moreover (cf. [10], Example 1), the leaves of $\mathcal{F}(\mathcal{K})$ are hyperplanes

$$\mathcal{L}_{\rho} = \left\{ x \in \mathbb{S}_{1}^{n+1}; \langle x, a \rangle = \rho \right\}, \ \rho > 0,$$

which are totally umbilical hypersurfaces of \mathcal{H}^{n+1} isometric to the Euclidean space \mathbb{R}^n , and having constant mean curvature 1 with respect to the unit past-directed normal fields

$$\eta_{\rho}(x) = x - \frac{1}{\rho}a, \quad x \in \mathcal{L}_{\rho}.$$

3. Rigidity results in \mathbb{H}^{n+1}

In this section, instead of the more commonly used half-space model for the (n+1)-dimensional hyperbolic space, we consider the warped product model

$$\mathbb{H}^{n+1} = \mathbb{R} \times_{e^t} \mathbb{R}^n.$$

It can easily be seen that the fibers $M_{t_0} = \{t_0\} \times \mathbb{R}^n$ of the warped product model are precisely the horospheres of \mathbb{H}^{n+1} . Moreover, these have constant mean curvature 1 if we take the orientation given by the unit normal vector field $N = -\partial_t$ (cf. [8], Example 3 of Section 4).

Another useful model for \mathbb{H}^{n+1} is the so-called *Lorentz model*, obtained by furnishing the hyperquadric

$${p \in \mathbb{L}^{n+2}; \langle p, p \rangle = -1, p_{n+2} > 0}$$

with the (Riemannian) metric induced by the Lorentz metric of \mathbb{L}^{n+2} . In this setting, if $a \in \mathbb{L}^{n+2}$ denotes a fixed null vector as in the beginning of the previous section, a typical horosphere is

$$L_{\tau} = \{ p \in \mathbb{H}^{n+1}; \langle p, a \rangle = \tau \},$$

where τ is a positive real number. A straightforward computation shows that

$$\xi_p = -p - \frac{1}{\tau}a \in \mathcal{H}^{n+1}$$

is a unit normal vector field along L_{τ} , with respect to which L_{τ} has mean curvature 1 (cf. [6], Section 3).

In the context of the Lorentz model of \mathbb{H}^{n+1} , we say that a hypersurface $\psi: \Sigma^n \to \mathbb{H}^{n+1}$ is under a horosphere L_{τ} when $\langle \psi, a \rangle \leq \tau$. In this case, if we consider the warped model of \mathbb{H}^{n+1} , we easily see that the height function $h = \pi_{\mathbb{R}} \circ \psi$ of Σ^n is bounded from above.

Now, we present our analytical framework.

Lemma 3.1 ([3], Proposition 3.2). Let $\psi : \Sigma^n \to \mathbb{R} \times_f M^n$ be a hypersurface immersed into a Riemannian warped product $\mathbb{R} \times_f M^n$, with Gauss map N. Then, by denoting $h = \pi_I \circ \psi$ the height function of Σ^n , we have

$$\Delta h = (\ln f)'(h)(n - |\nabla h|^2) + nH\langle N, \partial_t \rangle.$$

We also will need the well known generalized $Maximum\ Principle$ due to H. Omori and S. T. Yau [11, 12].

Lemma 3.2. Let Σ^n be an n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below and $u: \Sigma^n \to \mathbb{R}$ be a smooth function which is bounded from above on Σ^n . Then there is a sequence of points $\{p_k\}$ in Σ^n such that

$$\lim_{k\to\infty} u(p_k) = \sup_{\Sigma} u, \ \lim_{k\to\infty} |\nabla u(p_k)| = 0 \ \text{ and } \ \lim_{k\to\infty} \Delta u(p_k) \leq 0.$$

In what follows, we will consider an isometry Φ between the warped product and Lorentz models of \mathbb{H}^{n+1} which carries $(\partial_t)_q$ to $\Phi_*(\partial_t) = \xi_{\Phi(q)}$ (such isometry is given in [1]). In this setting, it is natural to consider the *Lorentz Gauss map* of Σ with respect to N as given by

$$\begin{array}{ccc} \Sigma^n & \to & \mathcal{H}^{n+1} \\ p & \mapsto & -\Phi_*(N_p). \end{array}$$

Given a hypersurface Σ^n in \mathbb{H}^{n+1} whose Gauss map satisfies $\langle N, \partial_t \rangle < 0$, we define the *normal angle* θ of Σ^n as being the smooth function $\theta : \Sigma^n \to [0, \frac{\pi}{2}]$ given by

$$0 \le \cos \theta = -\langle N, \partial_t \rangle \le 1.$$

Now, we can state and prove our main result.

Theorem 3.3. Let $\psi: \Sigma^n \to \mathbb{H}^{n+1}$ be a complete hypersurface, with bounded second fundamental form A. Suppose that the mean curvature H of Σ^n is such that $0 \le H \le 1$. If Σ^n is under a horosphere of \mathbb{H}^{n+1} and its normal angle θ satisfies $\cos \theta \ge \sup_{\Sigma} H$, then Σ^n is a horosphere and the image of its Lorentz Gauss map is exactly a hyperplane of \mathcal{H}^{n+1} .

Proof. Initially, let us consider $X \in \mathfrak{X}(\Sigma)$ with |X| = 1. It follows from Gauss equation that

$$\operatorname{Ric}_{\Sigma}(X) = 1 - n + nH\langle AX, X \rangle - \langle AX, AX \rangle,$$

where Ric_{Σ} stands for the Ricci curvature of Σ^{n} . Hence,

$$\operatorname{Ric}_{\Sigma} \ge 1 - n - nH|A| - |A|^2$$
.

Thus, since H and A are supposed to be bounded, we conclude that Ric_{Σ} is bounded from below on Σ^n .

Now, from Lemma 3.1, we have that

$$\Delta h = n \left(1 + H \langle N, \partial_t \rangle \right) - |\nabla h|^2.$$

On the other hand, since Σ^n is supposed to be under a horosphere of \mathbb{H}^{n+1} and its Ricci curvature is bounded from below, we are in position to apply Lemma 3.2 to the function h, obtaining a sequence $\{p_k\}$ in Σ^n such that

$$\lim_{k \to \infty} h(p_k) = \sup_{\Sigma} h, \quad \lim_{k \to \infty} |\nabla h(p_k)| = 0 \text{ and } \lim_{k \to \infty} \Delta h(p_k) \le 0.$$

Consequently, since the functions H and $\langle N, \partial_t \rangle$ are bounded on Σ^n , we get a subsequence $\{p_{k_i}\}$ of $\{p_k\}$ such that

$$0 \ge \lim_{j \to \infty} \Delta h(p_{k_j}) \ge n \left(1 - \lim_{j \to \infty} H(p_{k_j})\right) \ge 0.$$

Then, $\lim_{j\to\infty} H(p_{k_j}) = 1$, and $\sup_{\Sigma} H = 1$. Thus, since we are supposing that the normal angle θ of Σ^n satisfies $\cos\theta \geq \sup_{\Sigma} H$, we get that $\langle N, \partial_t \rangle = -\cos\theta = -1$ on Σ^n and, hence, Σ^n is a horosphere. Moreover, by considering an isometry Φ between the warped product and Lorentz models of \mathbb{H}^{n+1} , we get

$$\langle N, a \rangle = \langle -\partial_t, a \rangle = \langle -\xi_{\Phi}, a \rangle = \langle \psi, a \rangle$$

and, therefore, we conclude that $N(\Sigma)$ is exactly a hyperplane of \mathcal{H}^{n+1} .

Remark 3.4. Let $\psi: \Sigma^n \to \mathbb{H}^{n+1}$ be a immersion from a compact manifold Σ^n with mean convex boundary $\partial \Sigma$ contained into a horosphere L_{τ} , for some $\tau > 0$. Suppose that ψ has constant mean curvature $0 \le H \le 1$. From the gradient estimate (19) of [6], taking into account our choice of the orientation N of Σ^n , we get

$$\langle N, a \rangle \ge H\tau$$
.

Consequently, by supposing that Σ^n is under the horosphere L_{τ} , we conclude that its normal angle θ satisfies

$$\cos \theta = -\langle N, \partial_t \rangle = \frac{1}{\langle \psi, a \rangle} \langle N, a \rangle \ge \frac{1}{\tau} \langle N, a \rangle \ge H.$$

Since for a hypersurface Σ^n immersed in \mathbb{H}^{n+1} we have that

$$|A|^2 = n^2 H^2 - n(n-1)(R+1),$$

where R denotes de scalar curvature of Σ^n , we get:

Corollary 3.5. Let $\psi: \Sigma^n \to \mathbb{H}^{n+1}$ be a complete hypersurface, with scalar curvature R bounded from below. Suppose that the mean curvature H of Σ^n is such that $0 \le H \le 1$. If Σ^n is under a horosphere of \mathbb{H}^{n+1} and its normal angle θ satisfies $\cos \theta \ge \sup_{\Sigma} H$, then Σ^n is a horosphere and the image of its Lorentz Gauss map is exactly a hyperplane of \mathcal{H}^{n+1} .

By using once more the existence of a natural duality between \mathbb{H}^{n+1} and \mathcal{H}^{n+1} , we obtain the following consequence of Theorem 3.3.

Corollary 3.6. Let $\psi: \Sigma^n \to \mathbb{H}^{n+1}$ be a complete hypersurface, with bounded second fundamental form A. Suppose that the mean curvature H of Σ^n is such that $0 \le H \le 1$. If Σ^n is under a horosphere L_{τ} and the image of its Lorentz Gauss map $N(\Sigma)$ is contained in the closure of the interior domain enclosed by a hyperplane \mathcal{L}_{ρ} of \mathcal{H}^{n+1} , with $\frac{\rho}{\tau} \ge \sup_{\Sigma} H$, then Σ^n is a horosphere and the image of its Lorentz Gauss map is exactly a hyperplane of \mathcal{H}^{n+1} .

Proof. By considering again an isometry Φ between the warped product and Lorentz models of \mathbb{H}^{n+1} , we get

$$\langle N, \partial_t \rangle = \langle N, -\psi - \frac{1}{\langle \psi, a \rangle} a \rangle = -\frac{1}{\langle \psi, a \rangle} \langle N, a \rangle.$$

Consequently, since we are supposing that Σ^n is under the horosphere L_{τ} and that its Lorentz Gauss map $N(\Sigma)$ is contained in the closure of the interior domain enclosed by the hyperplane \mathcal{L}_{ρ} ,

$$\cos \theta = -\langle N, \partial_t \rangle \ge \frac{\rho}{\tau}.$$

Therefore, our hypothesis on the image of the Lorentz Gauss map of Σ^n amounts to

$$\cos\theta \geq \sup_{\Sigma} \! H$$

and, hence, the result follows from Theorem 3.3.

In the 3-dimensional case, we obtain the following rigidity result concerning to complete surfaces of nonnegative Gaussian curvature.

Theorem 3.7. Let $\psi: \Sigma^2 \to \mathbb{H}^3$ be a complete surface of nonnegative Gaussian curvature and with mean curvature $0 \le H \le 1$. If the normal angle θ of Σ^2 satisfies $\cos \theta \ge H$, then Σ^2 is a horosphere and the image of its Lorentz Gauss map is exactly a plane of \mathcal{H}^3 .

Proof. By applying Lemma 3.1, we get

$$\Delta e^{-h} = e^{-h} (|\nabla h|^2 - \Delta h)$$
$$= 2e^{-h} (|\nabla h|^2 - 1 - H\langle N, \partial_t \rangle).$$

On the other hand, since $h = \pi_{\mathbb{R}_{1\Sigma}}$, one has

$$\nabla h = \nabla(\pi_{\mathbb{R}_{|\Sigma}}) = (\overline{\nabla}\pi_{\mathbb{R}})^{\top} = \partial_t^{\top}$$
$$= \partial_t - \langle N, \partial_t \rangle N,$$

where $\overline{\nabla}$ denotes the gradient with respect to the metric of \mathbb{H}^3 , and $()^{\top}$ the tangential component of a vector field in $\mathfrak{X}(\mathbb{H}^3)$ along Σ^2 . Consequently, $|\nabla h|^2 = 1 - \cos^2 \theta$. Thus,

$$\Delta e^{-h} = 2e^{-h}\cos\theta \left(H - \cos\theta\right)$$

and, hence, our hypothesis on the normal angle θ of Σ^2 guarantees that the function e^{-h} is a superharmonic positive function on Σ . However, a classical result due to A. Huber [4] assures that complete surfaces of nonnegative Gaussian curvature must be parabolic. Therefore, h is constant on Σ^2 , that is, Σ^2 is a horosphere of \mathbb{H}^3 and the image of its Lorentz Gauss map $N(\Sigma)$ is exactly a plane of \mathcal{H}^3 .

References

- [1] L. J. Alías and M. Dajczer, Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv. 81 (2006), no. 3, 653–663.
- [2] F. E. C. Camargo, A. Caminha, and H. F. de Lima, Bernstein-type Theorems in Semi-Riemannian Warped Products, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1841–1850.
- [3] A. Caminha and H. F. de Lima, Complete vertical graphs with constant mean curvature in semi-Riemannian warped products, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91–105.
- [4] A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13–72.
- [5] H. F. de Lima, Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space, J. Geom. Phys. **57** (2007), no. 3, 967–975.
- [6] R. López and S. Montiel, Existence of constant mean curvature graphs in hyperbolic space, Calc. Var. Partial Differential Equations 8 (1999), no. 2, 177–190.
- [7] S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces, J. Math. Soc. Japan 55 (2003), no. 4, 915–938.
- [8] _____, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), no. 2, 711–748.
- [9] _____, Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes, Math. Ann. **314** (1999), no. 3, 529–553.
- [10] ______, An integral inequality for compact spacelike hypersurfaces in De Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988), no. 4, 909–917.
- [11] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205–214.
- [12] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228.
- [13] _____, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670.

DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA

Universidade Federal de Campina Grande

Campina Grande, Paraíba, Brazil

E-mail address: henrique.delima@pq.cnpq.br