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RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE

Henrique Fernandes de Lima

Abstract. As a suitable application of the well known generalized max-
imum principle of Omori-Yau, we obtain rigidity results concerning to
a complete hypersurface immersed with bounded mean curvature in the
(n+ 1)-dimensional hyperbolic space Hn+1. In our approach, we explore
the existence of a natural duality between Hn+1 and the half Hn+1 of
the de Sitter space S

n+1
1 , which models the so-called steady state space.

1. Introduction

In this paper, we are interested in the study of complete non-compact hy-
persurfaces immersed with bounded mean curvature in the (n+1)-dimensional
hyperbolic space H

n+1. Before giving details on our work, we present a brief
outline of the main results related to our ones.

In [1], L. J. Aĺıas and M. Dajczer studied complete surfaces properly im-
mersed in H

3 which are contained between two horospheres, obtaining a Bern-
stein-type result for the case of constant mean curvature −1 ≤ H ≤ 1.

The author and A. Caminha have studied in [3] complete vertical graphs of
constant mean curvature in H

n+1. Under appropriate restriction on the growth
of the height function, they obtained necessary conditions for the existence of
such a graph. Furthermore, for complete surfaces of nonnegative Gaussian
curvature, they obtained a Bernstein-type theorem in H

3.
More recently, by applying a technique of S. T. Yau [13], the author jointly

with F. E. C. Camargo and A. Caminha [2] have also obtained Bernstein-type
results in H

n+1.
Here, under an appropriated restriction on the normal angle of the hyper-

surface (that is, the angle between the Gauss map of the hypersurface and the
unitary vector field which determines on H

n+1 a codimension one foliation by
horospheres; see Section 3), we obtain rigidity theorems concerning to a com-
plete hypersurface immersed with bounded mean curvature in H

n+1. In our
approach, we explore the existence of a natural duality between H

n+1 and the
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98 HENRIQUE FERNANDES DE LIMA

half Hn+1 of the de Sitter space S
n+1
1 , which models the so-called steady state

space (cf. Sections 2 and 3).
We prove the following (cf. Theorem 3.3; see also Corollaries 3.5 and 3.6):
Let ψ : Σn → H

n+1 be a complete hypersurface, with bounded second fun-

damental form A. Suppose that the (not necessarily constant) mean curvature

H of Σn is such that 0 ≤ H ≤ 1. If Σn is under a horosphere of Hn+1 and

its normal angle θ satisfies cos θ ≥ supΣH, then Σn is a horosphere and the

image of its Lorentz Gauss map is exactly a hyperplane of Hn+1.

We want to point out that our restriction on the normal angle of the hyper-
surface is motivated by a gradient estimate due to R. López and S. Montiel [6]
(for more details, see Remark 3.4).

Furthermore, by applying a classical result due to A. Huber [4] concerned
with parabolic surfaces, we also prove the following (cf. Theorem 3.7):

Let ψ : Σ2 → H
3 be a complete surface of nonnegative Gaussian curvature

and with (not necessarily constant) mean curvature 0 ≤ H ≤ 1. If the normal

angle θ of Σ2 satisfies cos θ ≥ H, then Σ2 is a horosphere and the image of its

Lorentz Gauss map is exactly a plane of H3.

2. The steady state space Hn+1

In order to study the geometry of the Gauss map of a hypersurface immersed
in the hyperbolic space, we need some preliminaries of Lorentz geometry.

Let Ln+2 denote the (n+ 2)-dimensional Lorentz-Minkowski space (n ≥ 2),
that is, the real vector space Rn+2 endowed with the Lorentz metric defined by

〈v, w〉 =

n+1
∑

i=1

viwi − vn+2wn+2

for all v, w ∈ R
n+2. We define the (n+ 1)-dimensional de Sitter space S

n+1
1 as

the following hyperquadric of Ln+2:

S
n+1
1 =

{

p ∈ Ln+2; 〈p, p〉 = 1
}

.

The induced metric from 〈, 〉 makes Sn+1
1 into a Lorentz manifold with constant

sectional curvature one. Moreover, if p ∈ S
n+1
1 , we can put

Tp
(

S
n+1
1

)

=
{

v ∈ L
n+2; 〈v, p〉 = 0

}

.

Let a ∈ L
n+2 be a non-zero null vector in the past half of the null cone (with

vertex in the origin), that is, 〈a, a〉 = 0 and 〈a, en+2〉 > 0, where en+2 =
(0, . . . , 0, 1). Then the open region of the de Sitter space S

n+1
1 , given by

Hn+1 =
{

x ∈ S
n+1
1 ; 〈x, a〉 > 0

}

is the so-called steady state space. Observe that Hn+1 is extendible and, so,
non-compact, being only half a de Sitter space. Its boundary, as a subset of
S
n+1
1 , is the null hypersurface

{

x ∈ S
n+1
1 ; 〈x, a〉 = 0

}

,
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whose topology is that of R× S
n−1 (cf. [7]).

Now, we shall consider in Hn+1 the timelike field

K = 〈x, a〉x− a.

We easily see that

∇V K = 〈x, a〉V for all V ∈ X(Hn+1),

that is, K is closed and conformal field on Hn+1 (cf. [5], Section 2). Then, from
Proposition 1 of [9], we have that the n-dimensional distribution D defined on
Hn+1 by

p ∈ Hn+1 7−→ D(p) =
{

v ∈ TpH
n+1; 〈K(p), v〉 = 0

}

determines a codimension one spacelike foliation F (K) which is oriented by K.
Moreover (cf. [10], Example 1), the leaves of F (K) are hyperplanes

Lρ =
{

x ∈ S
n+1
1 ; 〈x, a〉 = ρ

}

, ρ > 0,

which are totally umbilical hypersurfaces of Hn+1 isometric to the Euclidean
space Rn, and having constant mean curvature 1 with respect to the unit past-
directed normal fields

ηρ (x) = x−
1

ρ
a, x ∈ Lρ.

3. Rigidity results in H
n+1

In this section, instead of the more commonly used half-space model for the
(n+ 1)-dimensional hyperbolic space, we consider the warped product model

H
n+1 = R×et R

n.

It can easily be seen that the fibers Mt0 = {t0} × R
n of the warped product

model are precisely the horospheres of Hn+1. Moreover, these have constant
mean curvature 1 if we take the orientation given by the unit normal vector
field N = −∂t (cf. [8], Example 3 of Section 4).

Another useful model for H
n+1 is the so-called Lorentz model, obtained by

furnishing the hyperquadric

{p ∈ L
n+2; 〈p, p〉 = −1, pn+2 > 0}

with the (Riemannian) metric induced by the Lorentz metric of Ln+2. In this
setting, if a ∈ L

n+2 denotes a fixed null vector as in the beginning of the
previous section, a typical horosphere is

Lτ = {p ∈ H
n+1; 〈p, a〉 = τ},

where τ is a positive real number. A straightforward computation shows that

ξp = −p−
1

τ
a ∈ Hn+1

is a unit normal vector field along Lτ , with respect to which Lτ has mean
curvature 1 (cf. [6], Section 3).
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In the context of the Lorentz model of Hn+1, we say that a hypersurface
ψ : Σn → H

n+1 is under a horosphere Lτ when 〈ψ, a〉 ≤ τ . In this case, if
we consider the warped model of Hn+1, we easily see that the height function
h = πR ◦ ψ of Σn is bounded from above.

Now, we present our analytical framework.

Lemma 3.1 ([3], Proposition 3.2). Let ψ : Σn → R ×f M
n be a hypersurface

immersed into a Riemannian warped product R ×f M
n, with Gauss map N .

Then, by denoting h = πI ◦ ψ the height function of Σn, we have

∆h = (ln f)′(h)(n− |∇h|2) + nH〈N, ∂t〉.

We also will need the well known generalized Maximum Principle due to H.
Omori and S. T. Yau [11, 12].

Lemma 3.2. Let Σn be an n-dimensional complete Riemannian manifold

whose Ricci curvature is bounded from below and u : Σn → R be a smooth

function which is bounded from above on Σn. Then there is a sequence of

points {pk} in Σn such that

lim
k→∞

u(pk) = sup
Σ
u, lim

k→∞

|∇u(pk)| = 0 and lim
k→∞

∆u(pk) ≤ 0.

In what follows, we will consider an isometry Φ between the warped prod-
uct and Lorentz models of Hn+1 which carries (∂t)q to Φ∗(∂t) = ξΦ(q) (such
isometry is given in [1]). In this setting, it is natural to consider the Lorentz

Gauss map of Σ with respect to N as given by

Σn → Hn+1

p 7→ −Φ∗(Np).

Given a hypersurface Σn in H
n+1 whose Gauss map satisfies 〈N, ∂t〉 < 0, we

define the normal angle θ of Σn as being the smooth function θ : Σn → [0, π2 ]
given by

0 ≤ cos θ = −〈N, ∂t〉 ≤ 1.

Now, we can state and prove our main result.

Theorem 3.3. Let ψ : Σn → H
n+1 be a complete hypersurface, with bounded

second fundamental form A. Suppose that the mean curvature H of Σn is such

that 0 ≤ H ≤ 1. If Σn is under a horosphere of Hn+1 and its normal angle θ

satisfies cos θ ≥ supΣH, then Σn is a horosphere and the image of its Lorentz

Gauss map is exactly a hyperplane of Hn+1.

Proof. Initially, let us consider X ∈ X(Σ) with |X | = 1. It follows from Gauss
equation that

RicΣ(X) = 1− n+ nH〈AX,X〉 − 〈AX,AX〉,

where RicΣ stands for the Ricci curvature of Σn. Hence,

RicΣ ≥ 1− n− nH |A| − |A|2.



RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE 101

Thus, since H and A are supposed to be bounded, we conclude that RicΣ is
bounded from below on Σn.

Now, from Lemma 3.1, we have that

∆h = n (1 +H〈N, ∂t〉)− |∇h|2.

On the other hand, since Σn is supposed to be under a horosphere of Hn+1

and its Ricci curvature is bounded from below, we are in position to apply
Lemma 3.2 to the function h, obtaining a sequence {pk} in Σn such that

lim
k→∞

h(pk) = sup
Σ
h, lim

k→∞

|∇h(pk)| = 0 and lim
k→∞

∆h(pk) ≤ 0.

Consequently, since the functions H and 〈N, ∂t〉 are bounded on Σn, we get a
subsequence {pkj

} of {pk} such that

0 ≥ lim
j→∞

∆h(pkj
) ≥ n

(

1− lim
j→∞

H(pkj
)

)

≥ 0.

Then, limj→∞H(pkj
) = 1, and supΣH = 1. Thus, since we are supposing

that the normal angle θ of Σn satisfies cos θ ≥ supΣH, we get that 〈N, ∂t〉 =
− cos θ = −1 on Σn and, hence, Σn is a horosphere. Moreover, by considering
an isometry Φ between the warped product and Lorentz models of Hn+1, we
get

〈N, a〉 = 〈−∂t, a〉 = 〈−ξΦ, a〉 = 〈ψ, a〉

and, therefore, we conclude that N(Σ) is exactly a hyperplane of Hn+1. �

Remark 3.4. Let ψ : Σn → H
n+1 be a immersion from a compact manifold

Σn with mean convex boundary ∂Σ contained into a horosphere Lτ , for some
τ > 0. Suppose that ψ has constant mean curvature 0 ≤ H ≤ 1. From the
gradient estimate (19) of [6], taking into account our choice of the orientation
N of Σn, we get

〈N, a〉 ≥ Hτ.

Consequently, by supposing that Σn is under the horosphere Lτ , we conclude
that its normal angle θ satisfies

cos θ = −〈N, ∂t〉 =
1

〈ψ, a〉
〈N, a〉 ≥

1

τ
〈N, a〉 ≥ H.

Since for a hypersurface Σn immersed in H
n+1 we have that

|A|2 = n2H2 − n(n− 1)(R+ 1),

where R denotes de scalar curvature of Σn, we get:

Corollary 3.5. Let ψ : Σn → H
n+1 be a complete hypersurface, with scalar

curvature R bounded from below. Suppose that the mean curvature H of Σn

is such that 0 ≤ H ≤ 1. If Σn is under a horosphere of Hn+1 and its normal

angle θ satisfies cos θ ≥ supΣH, then Σn is a horosphere and the image of its

Lorentz Gauss map is exactly a hyperplane of Hn+1.
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By using once more the existence of a natural duality between H
n+1 and

Hn+1, we obtain the following consequence of Theorem 3.3.

Corollary 3.6. Let ψ : Σn → H
n+1 be a complete hypersurface, with bounded

second fundamental form A. Suppose that the mean curvature H of Σn is such

that 0 ≤ H ≤ 1. If Σn is under a horosphere Lτ and the image of its Lorentz

Gauss map N(Σ) is contained in the closure of the interior domain enclosed

by a hyperplane Lρ of Hn+1, with ρ
τ
≥ supΣH, then Σn is a horosphere and

the image of its Lorentz Gauss map is exactly a hyperplane of Hn+1.

Proof. By considering again an isometry Φ between the warped product and
Lorentz models of Hn+1, we get

〈N, ∂t〉 = 〈N,−ψ −
1

〈ψ, a〉
a〉 = −

1

〈ψ, a〉
〈N, a〉.

Consequently, since we are supposing that Σn is under the horosphere Lτ and
that its Lorentz Gauss map N(Σ) is contained in the closure of the interior
domain enclosed by the hyperplane Lρ,

cos θ = −〈N, ∂t〉 ≥
ρ

τ
.

Therefore, our hypothesis on the image of the Lorentz Gauss map of Σn

amounts to

cos θ ≥ sup
Σ
H

and, hence, the result follows from Theorem 3.3. �

In the 3-dimensional case, we obtain the following rigidity result concerning
to complete surfaces of nonnegative Gaussian curvature.

Theorem 3.7. Let ψ : Σ2 → H
3 be a complete surface of nonnegative Gauss-

ian curvature and with mean curvature 0 ≤ H ≤ 1. If the normal angle θ of

Σ2 satisfies cos θ ≥ H, then Σ2 is a horosphere and the image of its Lorentz

Gauss map is exactly a plane of H3.

Proof. By applying Lemma 3.1, we get

∆e−h = e−h
(

|∇h|2 −∆h
)

= 2e−h
(

|∇h|2 − 1−H〈N, ∂t〉
)

.

On the other hand, since h = πR|Σ
, one has

∇h = ∇(πR|Σ
) = (∇πR)

⊤ = ∂⊤t

= ∂t − 〈N, ∂t〉N,

where ∇ denotes the gradient with respect to the metric of H
3, and ( )⊤

the tangential component of a vector field in X(H3) along Σ2. Consequently,
|∇h|2 = 1− cos2 θ. Thus,

∆e−h = 2e−h cos θ (H − cos θ)
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and, hence, our hypothesis on the normal angle θ of Σ2 guarantees that the
function e−h is a superharmonic positive function on Σ. However, a classical
result due to A. Huber [4] assures that complete surfaces of nonnegative Gauss-
ian curvature must be parabolic. Therefore, h is constant on Σ2, that is, Σ2 is
a horosphere of H3 and the image of its Lorentz Gauss map N(Σ) is exactly a
plane of H3. �
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Universidade Federal de Campina Grande

Campina Grande, Paráıba, Brazil

E-mail address: henrique.delima@pq.cnpq.br


