L^{p}-ESTIMATES FOR THE $\bar{\partial}$-EQUATION WITH EXACT SUPPORT ON q-CONVEX INTERSECTIONS

Shaban Khidr

Abstract

We construct bounded linear integral operators that giving solutions to the $\bar{\partial}$-equation in L^{p}-spaces and with compact supports on a q-convex intersection $(q \geq 1)$ with \mathcal{C}^{3} boundary in Kähler manifolds, and we apply it to obtain a Hartogs-like extension theorems for $\bar{\partial}$-closed forms for some bidegree.

1. Introduction

The problem of solving $\bar{\partial}$ with exact support was initiated for differential forms by Andreotti and Hill in [5] and [6]. Later, it has been widely investigated (cf. [11], [12], [13] and [18]). More precisely, let $\Omega \subset \subset X$ be a relatively compact domain in a complex manifold X of complex dimension n and E be a holomorphic Hermitian vector bundle over X. If Ω is a bounded pseudoconvex domain in \mathbb{C}^{n}, Chen and Shaw proved in [11, Chapter 9] that for any $\bar{\partial}$-closed (r, s)-form f with L^{2} (or \mathcal{C}^{∞}) coefficients in \mathbb{C}^{n} and compactly supported in $\bar{\Omega}$, there exists a form u in $L_{r, s-1}^{2}\left(\mathbb{C}^{n}\right)\left(\right.$ or in $\left.\mathcal{C}_{r, s-1}^{\infty}\left(\mathbb{C}^{n}\right)\right)$ such that u is compactly supported in $\bar{\Omega}$ and $\bar{\partial} u=f$ in \mathbb{C}^{n}, for $0 \leq r \leq n$ and $1 \leq s \leq n-1$. When Ω is a bounded domain with Lipschitz boundary and satisfies a convexity condition called $\log \delta$-pseudoconvex in an n-dimensional Kähler manifold X, Brinkschulte proved in [9] that if f is a $\bar{\partial}$-closed E-valued (r, s)-form with \mathcal{C}^{∞}-coefficients in X and with compact support in $\bar{\Omega}$, then there exists a $(r, s-1)$-form u with \mathcal{C}^{∞}-coefficients in X and with compact support in $\bar{\Omega}$ such that $\bar{\partial} u=f$ in X, for $0 \leq r \leq n$ and $1 \leq s \leq n-1$. Moreover, she proved that the range of the $\bar{\partial}$-operator acting on the subspace of $(r, n-1)$-forms of class \mathcal{C}^{∞} and compactly supported in $\bar{\Omega}$ is closed.

Analogous results to those of [9] have been obtained by Sambou in [23] for \mathbb{C}-valued (r, s)-forms with compact support in $\bar{\Omega}$ when Ω is a completely strictly q-convex domain $(0 \leq q \leq n-1)$ with smooth boundary in an n-dimensional complex manifold X for all $1 \leq s \leq q$. This domain is defined in the sense

[^0]of Henkin by $\Omega=\{z \in U \mid \rho(z)<0\}$ where ρ is a smooth function defined on an open neighborhood U of $\bar{\Omega}$ whose Levi form has at least $q+1$ positive eigenvalues everywhere (see e.g. [16]). In addition, he showed that the range of the $\bar{\partial}$-operator acting on the subspace of $\mathcal{C}^{\infty}(r, s-1)$-forms with compact support in $\bar{\Omega}$ is closed for $1 \leq s \leq q+1$. Further, he proved that the $\bar{\partial}$-equation is solvable on such domain for extensible currents of bidegree $(n, n-s)$ for all s with $1 \leq n-q \leq s \leq n$. Furthermore, the case for strictly q-concave domains is dealt by the author in [24].

It worth also to mention that solving the $\bar{\partial}$-equation with prescribed support enables one to obtain $\bar{\partial}_{b}$-closed extensions of forms from boundaries of bounded domains (see e.g. [9], [10], [11] and [14]).

Solving $\bar{\partial}$ with compact support in L^{p}-spaces (or the so called the weak L^{p} $\bar{\partial}$-Cauchy problem) is formulated by giving a $\bar{\partial}$-closed form f in $L_{r, s}^{p}(X, E)$ with compact support in $\bar{\Omega}, 0 \leq r \leq n, 1 \leq s \leq n$ and $p \geq 1$, the problem is then to find a form u in $L_{r, s-1}^{p}(X, E)$ such that

$$
\left\{\begin{array}{l}
\bar{\partial} u=f \text { in the weak sense in } X, \tag{1}\\
\text { supp } u \subset \bar{\Omega} .
\end{array}\right.
$$

This problem was solved by Amar and Mongodi in [4] for \mathbb{C}-valued forms on Stein open domains of the form $\mathbb{D}^{n} \backslash \mathcal{Z}$ in \mathbb{C}^{n}, where \mathbb{D}^{n} is a polydisc and \mathcal{Z} is the zero locus of some holomorphic function, and by Amar in [3] for weakly p-regular domains in Stein manifolds. In [19], Laurent-Thiébaut gave some general cohomological and geometric conditions on X and Ω under which (1) can be solved. In particular, she solved (1) for \mathbb{C}-valued (r, s)-forms on completely q-convex domains in complex manifolds for all $1 \leq s \leq n-q$ (See Corollary 2.23 in [19]).

The plane of the paper is as follows. We first extend some complex analysis results of Amar [3] to E-valued currents on relatively compact domains in Kähler manifolds. Next, via a partition of unity, we globalize the local compact integral homotopy operators constructed in [20] for the $\bar{\partial}$-equation to get global ones for E-valued forms on a $\mathcal{C}^{3} q$-convex intersection Ω in an n dimensional Kähler manifold X. We moreover show that the $L^{p}-\bar{\partial}$-cohomology group $H_{L^{p}}^{r, s}(\Omega, E)$ is finite dimensional and the space $\bar{\partial}\left(L_{r, s-1}^{p}(\Omega, E)\right)$ is closed subspace of $L_{r, s}^{p}(\Omega, E)$ for all $q \leq s \leq n-1$. By using these integral homotopy formulas, we then solve the $\bar{\partial}$-equation with global L^{p}-estimates for $\bar{\partial}$-closed E valued forms of type (n, s) with $1 \leq s \leq \min \{n-q, n-m\}$ and $1 \leq q, m \leq n-1$ (respectively of type ($0, s$) with $m \leq s \leq n-q$ and $1 \leq q, m \leq n-1$) if E is Nakano semi-positive (respectively Nakano semi-negative) of type m on $\bar{\Omega}$ (see Theorem 3.4 below). This result generalizes some results of $[17]$ to E valued forms for some bidegree. Combining these results together with some arguments inspired from Laurent-Thiébaut [19], we have the following main theorem.

Theorem 1.1. Let $\Omega \subset \subset X$ be a $C^{3} q$-convex intersection $(1 \leq q \leq n-1)$ in an n-dimensional Kähler manifold X with $n \geq 2$ and E be a holomorphic Hermitian vector bundle over X such that $X \backslash \Omega$ is connected. Then the following assertions hold true.
(i) If E is Nakano semi-positive of type $m(1 \leq m \leq n-1)$ on $\bar{\Omega}$, then for any $\bar{\partial}$-closed form f in $L_{0, s}^{p^{\prime}}\left(X, E^{*}\right)$ such that f is supported in $\bar{\Omega}$, there exists a form u in $L_{0, s-1}^{p^{\prime}}\left(X, E^{*}\right)$ supported in $\bar{\Omega}$ such that $\bar{\partial} u=f$ in X, for $1 \leq s \leq \min \{n-q, n-m\}$.
(ii) If E is Nakano semi-negative of type m on $\bar{\Omega}$, then for any $\bar{\partial}$-closed form f in $L_{n, s}^{p^{\prime}}\left(X, E^{*}\right)$ with compact in $\bar{\Omega}$, there exists a form u in $L_{n, s-1}^{p^{\prime}}\left(X, E^{*}\right)$ with compact support in $\bar{\Omega}$ such that $\bar{\partial} u=f$ in X, for $m \leq s \leq n-q$.

This result generalizes Corollary 2.23 of Laurent-Thiébaut [19] (which was obtained for \mathbb{C}-valued (r, s)-forms, $0 \leq r \leq n, 1 \leq s \leq n-q$, on completely q-convex domains ($q \geq 1$) in complex manifolds) to more general q-convex domains and to E^{*}-valued forms for some bidegree.

Remark 1.2. We note that $\max \{q, m\}=1$ means that $m=q=1$. The case $m=1$ implies that E is Nakano-positive on $\bar{\Omega}$, then there is a Kähler metric on $\bar{\Omega}$, so the Kählerity assumption is automatically satisfied (see e.g. [1]) and $q=1$ means that Ω is a strictly pseudoconvex domain with piecewise \mathcal{C}^{3}-boundary (see e.g. [21]). Therefore the assertion (i) in Theorem 1.1 for this case still valid if X is replaced by any complex manifold of complex dimension $n \geq 2$.

Actually, the Kählerity property of X and the positivity assumptions on E play a crucial role in the proof of our results, these conditions ensure the L^{2}-existence theorem for the $\bar{\partial}$-equation in our setting (see [2]).

In addition, by using these results, we prove a Hartogs-like theorem for $\bar{\partial}$ closed forms in L^{p}-setting with $p \geq 1$ (see Theorem 4.1 below). This result generalizes the result of Theorem 5 in [10] which was obtained for \mathbb{C}-valued forms with coefficients in the usual L^{2}-Sobolev spaces $W^{k}, k \geq 0$, on bounded pseudoconvex domains with Lipschitz boundaries in Stein manifolds. As a results, we finally solve the $\bar{\partial}$-equation for forms with $W^{1, p}$-coefficients on an annulus type domain between two strictly q-convex domains with smooth boundaries in a Kähler manifold. This result was also proved in [10] for forms with $W^{k}{ }_{-}$ coefficients on an annulus domain between two pseudoconvex domains in a Stein manifold.

2. Preliminaries

In this section, we fix notations, definitions, and auxiliary results that will be used throughout the paper. Let X be a complex manifold of complex dimension n and E be a holomorphic Hermitian vector bundle of rank N over X. Let $\left\{U_{j}\right\} ; j \in I$, be an open covering of X consisting of coordinates neighborhoods
U_{j} with holomorphic coordinates $z_{j}=\left(z_{j}^{1}, z_{j}^{2}, \ldots, z_{j}^{n}\right)$ over which E is trivial, namely, $\pi^{-1}\left(U_{j}\right)=U_{j} \times \mathbb{C}^{N}$. The N-dimensional complex vector space $E_{z}=$ $\pi^{-1}(z) ; z \in X$, is called the fiber of E over z. Let h be a Hermitian metric along the fibers of E that defined by a system of Hermitian matrix-valued positive C^{∞} functions $\left\{h_{j}\right\} ; h_{j}=\left(h_{j \mu \bar{\eta}}\right)$. Denote by $\left(h_{j}^{\mu \bar{\eta}}\right)$ the inverse matrix of $\left(h_{j \mu \bar{\eta}}\right)$. Let $\theta=\left\{\theta_{j}\right\} ; \theta_{j}=\left(\theta_{j \mu}^{\nu}\right), \theta_{j \mu}^{\nu}=\sum_{\alpha=1}^{n} \sum_{\eta=1}^{N} h_{j}^{\nu \bar{\eta}} \frac{\partial h_{j \mu \bar{\eta}}}{\partial z_{j}^{\alpha}} d z_{j}^{\alpha}$ and $\Theta=\left\{\Theta_{j}\right\} ; \Theta_{j}=\left(\Theta_{j \mu}^{\nu}\right), \Theta_{j \mu}^{\nu}=\sqrt{-1} \bar{\partial} \partial \log h_{j}=\sqrt{-1} \sum_{\alpha, \beta=1}^{n} \Theta_{j \mu \alpha \bar{\beta}}^{\nu} d z_{j}^{\alpha} \wedge$ $d \bar{z}_{j}^{\beta}$, where $\Theta_{j \mu \alpha \bar{\beta}}^{\nu}=-\frac{\partial}{\partial \bar{z}_{j}^{\beta}}\left(h_{j}^{\nu \bar{\eta}} \frac{\partial h_{j \mu \bar{\eta}}}{\partial z_{j}^{\alpha}}\right), 1 \leq \mu, \nu \leq N$, be the connection and curvature forms associated to the metric h. The curvature matrix is given by $H_{j \bar{\eta} \bar{\beta}, \nu \alpha}=\sum_{\mu=1}^{N} h_{j \mu \bar{\eta}} \Theta_{j \nu \alpha \bar{\beta}}^{\mu}$.
Definition 2.1 (see e.g. [2]). Let E be a holomorphic Hermitian vector bundle of rank N over a complex manifold X of complex dimension n.
(a) E is said to be Nakano m-positive (respectively m-negative), at $x \in U_{j}$, if there exists an $(n-m+1)$-dimensional subspace S_{x} of the holomorphic tangent $T_{x}(X)$ such that the Hermitian form

$$
\begin{equation*}
\sum H_{j \bar{\eta} \bar{\beta}, \nu \alpha}(x) \zeta_{\alpha}^{\nu} \bar{\zeta}_{\beta}^{\eta} \tag{2}
\end{equation*}
$$

is positive (respectively negative) definite for any $\zeta=\left(\zeta_{\alpha}^{\nu}\right) \in S_{x} \otimes$ $E_{x} ; \zeta \neq 0$.
(b) E is said to be Nakano semi-positive (respectively semi-negative), at $x \in U_{j}$, if the Hermitian form (2) is positive (respectively negative) semi-definite for any $\zeta=\left(\zeta_{\alpha}^{\nu}\right) \in T_{x}(X) \otimes E_{x}$.
(c) E is said to be Nakano semi-positive (respectively semi-negative) of type m if E is both Nakano semi-positive and Nakano m-positive (respectively Nakano semi-negative and Nakano m-negative) at x.
For all $0 \leq r, s \leq n$, we denote by $\Lambda^{r, s}(X, E)$ the space of E-valued forms of bidegree (r, s) and of class C^{∞} on X with the topology of uniform convergence of forms and all their derivatives on compact subsets of X and by $\mathcal{D}^{r, s}(X, E)$ the subspace of $\Lambda^{r, s}(X, E)$ consisting of forms with compact supports in X. The associated cohomologies groups are denoted by $H^{r, s}(X, E)$ and $H_{c}^{r, s}(X, E)$ respectively. Let K be a compact subset of X and $\mathcal{D}_{K}^{r, s}(X, E)$ the closed subspace of $\Lambda^{r, s}(X, E)$ of forms with supports in K endowed with the induced topology. Let $\left\{K_{i}\right\}_{i \in \mathbb{N}}$ be an increasing sequence of compact subsets of X such that $K_{i} \subset K_{i+1}^{\circ}$ and $\bigcup_{i \in \mathbb{N}} K_{i}=X$. Then $\mathcal{D}^{r, s}(X, E)=\bigcup_{i=1}^{\infty} \mathcal{D}_{K_{i}}^{r, s}(X, E)$. We put on $\mathcal{D}^{r, s}(X, E)$ the strict inductive limit topology defined by the spaces $\mathcal{D}_{K_{i}}^{r, s}(X, E)$. If $\varphi \in \Lambda^{r, s}(X, E)$, then $\bar{\partial} \varphi=\left\{\bar{\partial} \varphi_{j}\right\}$, where $\bar{\partial} \varphi_{j}=\left(\bar{\partial} \varphi_{j}^{1}, \bar{\partial} \varphi_{j}^{2}, \ldots, \bar{\partial} \varphi_{j}^{N}\right)$. Let $d s^{2}$ be a Kähler metric on X defined by

$$
d s^{2}=\sum_{\alpha, \beta=1}^{n} g_{j \alpha \bar{\beta}} d z_{j}^{\alpha} d \bar{z}_{j}^{\beta}
$$

where $g_{j \alpha \bar{\beta}}$ is a C^{∞}-section of $T^{\star}(X) \otimes \bar{T}^{\star}(X)$ on U_{j}. For $\varphi, \psi \in \Lambda^{r, s}(M, E)$, we define a local inner product, at $z \in U_{j}$, by

$$
\sum_{\nu, \mu=1}^{N} h_{j \nu \bar{\mu}} \varphi_{j}^{\nu}(z) \wedge \star \overline{\psi_{j}^{\mu}(z)}=a(\varphi(z), \psi(z)) d v
$$

where the Hodge star operator \star and the volume element $d v$ are defined by $d s^{2}$ and $a(\varphi, \psi)$ is a function on X independent of j. For $\varphi, \psi \in \mathcal{D}^{r, s}(X, E)$, a global inner product is then defined by $(\varphi, \psi)=\int_{X} a(\varphi, \psi) d v$. Let $L_{r, s}^{2}(X, E)$ be the Hilbert space obtained by completing the space $\mathcal{D}^{r, s}(X, E)$ under the norm $\|\varphi\|^{2}=(\varphi, \varphi)$.

We now extend the complex analysis results obtained in [3] to domains in complex manifolds. Let $\Omega \subset \subset X$ be a bounded domain with smooth boundary in a Kähler manifold X of complex dimension n, E be a holomorphic Hermitian vector bundle of rank N over X, and E^{*} be the dual vector bundle of E. The space of E^{\star}-valued currents of bidegree $(n-r, n-s)$ (or bidimension (r, s)) denoted by $\mathcal{D}_{\text {cur }}^{n-r, n-s}\left(\Omega, E^{\star}\right)$ is the topological dual to the space $\mathcal{D}^{r, s}(\Omega, E)$. The $\bar{\partial}$-operator is defined from $\mathcal{D}_{\text {cur }}^{n-r, n-s}\left(\Omega, E^{\star}\right)$ into $\mathcal{D}_{\text {cur }}^{n-r, n-s+1}\left(\Omega, E^{\star}\right)$ as the transpose of the original $\bar{\partial}$-operator from $\mathcal{D}^{r, s}(\Omega, E)$ into $\mathcal{D}^{r, s+1}(\Omega, E)$. The topological dual to the space $\Lambda^{r, s}(\Omega, E)$ denoted by $\Lambda_{c, c u r}^{n-r, n-s}\left(\Omega, E^{\star}\right)$ is the space of E^{\star}-valued currents of of bidegree $(n-r, n-s)$ with compact supports in Ω. The restriction of the $\bar{\partial}$-operator to $\Lambda_{c, \text { cur }}^{n-r, n-s}\left(\Omega, E^{\star}\right)$ gives unbounded operator $\bar{\partial}: \Lambda_{c, \text { cur }}^{n-r, n-s}\left(\Omega, E^{\star}\right) \rightarrow \Lambda_{c, \text { cur }}^{n-r, n-s+1}\left(\Omega, E^{\star}\right)$. For further details on duality for complexes of topological vector spaces, we refer to [7] and the references therein.

Let $A_{r, s}(\Omega, E)$ be a topological space of E-valued (r, s)-forms on Ω and $A_{r, s}^{\prime}(\Omega, E)$ be its dual. Assume that the injections

$$
\mathcal{D}^{r, s}(\Omega, E) \hookrightarrow A_{r, s}(\Omega, E) \hookrightarrow \mathcal{D}_{\text {cur }}^{n-r, n-s}(\Omega, E)
$$

being continuous. Then $B_{n-r, n-s}\left(\Omega, E^{\star}\right)=A_{r, s}^{\prime}(\Omega, E)$ still a space of currents and asking that the duality pairing $\langle\phi, \psi\rangle=\int_{\Omega} \phi \wedge \psi$ be $\bar{\partial}$ compatible with currents, i.e., $\forall \phi \in \mathcal{D}_{\text {cur }}^{r, s}(\Omega, E)$ and $\psi \in \mathcal{D}^{n-r, n-s-1}\left(\Omega, E^{\star}\right)$,

$$
\langle\bar{\partial} \phi, \psi\rangle=(-1)^{r+s+1}\langle\phi, \bar{\partial} \psi\rangle .
$$

For $0 \leq r \leq n, 1 \leq s \leq n$, we recall that the equation $\bar{\partial} g=f$ is solvable in $A_{r, s}(\Omega, E)$ if for any $\bar{\partial}$-closed form f in $A_{r, s}(\Omega, E)$ there exists a form g in $A_{r, s-1}(\Omega, E)$ such that $\bar{\partial} g=f$ in Ω. Suppose now that the $\bar{\partial}$-equation is solvable in $A_{r, s}(\Omega, E)$ and $A_{r, s+1}(\Omega, E)$ for all $1 \leq s \leq n-1$. Let u be a $\bar{\partial}$-closed form in $B_{n-r, n-s}\left(\Omega, E^{\star}\right)$ and consider the form

$$
\begin{equation*}
\mathcal{L}_{u}(\eta)=\langle g, u\rangle \quad \forall \eta \in A_{r, s+1}(\Omega, E), \bar{\partial} \eta=0 \tag{3}
\end{equation*}
$$

with $\bar{\partial} g=\eta$, which exists by hypothesis. Denote by $\mathcal{H}_{r}(\Omega, E)$, the space of E-valued $\bar{\partial}$-closed $(r, 0)$-forms on Ω. Then we have:

Lemma 2.2. The form \mathcal{L}_{u} defined by (3), with $\langle g, u\rangle=0$ for $s=0$ and $g \in \mathcal{H}_{r}(\Omega, E)$, is well defined and linear.

Proof. In order to prove that the form \mathcal{L}_{u} is well defined, we have to show that $\langle g, u\rangle=\langle h, u\rangle$ if $g, h \in A_{r, s}(\Omega, E)$ with $\bar{\partial} g=\bar{\partial} h$.

We consider first the case when $1 \leq s \leq n$. Let $g, h \in A_{r, s}(\Omega, E)$ be such that $\bar{\partial} g=\bar{\partial} h=\eta$, then the difference $g-h$ is a $\bar{\partial}$-closed form in $A_{r, s}(\Omega, E)$. By hypothesis, there exists $\phi \in A_{r, s-1}(\Omega, E)$ such that $\bar{\partial} \phi=g-h$. Hence,

$$
\langle g-h, u\rangle=\langle\bar{\partial} \phi, u\rangle=(-1)^{r+s}\langle\phi, \bar{\partial} u\rangle=0 .
$$

Thus \mathcal{L}_{u} is also well defined for all $s \geq 1$.
For $s=0$, we have $\bar{\partial} u=0$ (because u is an $(n-r, n)$-form). Again, let $g, h \in A_{r, 0}(\Omega, E)$ with $\bar{\partial} g=\bar{\partial} h$, hence $g-h$ is a $\bar{\partial}$-closed $(r, 0)$-form, i.e., $g-h \in \mathcal{H}_{r}(\Omega, E)$. Since, by hypothesis, $u \perp \mathcal{H}_{r}(\Omega, E)$, we have $\langle g-h, u\rangle=0$. Then \mathcal{L}_{u} is also well defined in this case.

Next, we show that the form \mathcal{L}_{u} is linear, let η_{1} and η_{2} be in $A_{r, s+1}(\Omega, E)$ such that $\bar{\partial} \eta_{1}=\bar{\partial} \eta_{2}=0$ and put $\eta=\eta_{1}+\eta_{2}$, then $\bar{\partial} \eta=0$ and so there are g, g_{1} and g_{2} in $A_{r, s}(\Omega, E)$ such that $\bar{\partial} g=\eta, \bar{\partial} g_{1}=\eta_{1}$ and $\bar{\partial} g_{2}=\eta_{2}$. Thus $\bar{\partial}\left(g-g_{1}-g_{2}\right)=0$ and hence there is a form h in $A_{r, s-1}(\Omega, E)$ such that $g=g_{1}+g_{2}+\bar{\partial} h$, therefore
$\mathcal{L}_{u}(\eta)=\langle g, u\rangle=\left\langle g_{1}+g_{2}+\bar{\partial} h, u\right\rangle=\left\langle g_{1}, u\right\rangle+\left\langle g_{2}, u\right\rangle+\langle\bar{\partial} h, u\rangle=\mathcal{L}_{u}\left(\eta_{1}\right)+\mathcal{L}_{u}\left(\eta_{2}\right)$, where $\langle\bar{\partial} h, u\rangle=(-1)^{r+s}\langle h, \bar{\partial} u\rangle=0$. Similarly for $\lambda \eta ; \lambda \in \mathbb{C}$. The proof is complete.

Following [3], the equation $\bar{\partial} u=\eta$ is continuously solvable in $A_{r, s+1}(\Omega, E)$ if it is solvable in $A_{r, s}(\Omega, E)$ and $A_{r, s+1}(\Omega, E)$ and, moreover, if the form $\mathcal{L}_{u}(\eta)$ is continuously linear on the subspace of all $\bar{\partial}$-closed forms η in $A_{r, s+1}(\Omega, E)$.

Theorem 2.3. If the $\bar{\partial}$-equation is continuously solvable in $A_{r, s+1}(\Omega, E)$, then it is solvable in $B_{n-r, n-s}\left(\Omega, E^{\star}\right)$, that is, for any $f \in B_{n-r, n-s}\left(\Omega, E^{\star}\right)$ with $\bar{\partial} f=0$ if $1 \leq s \leq n-1$ and $\langle f, g\rangle=0$ for all $g \in \mathcal{H}_{r}(\Omega, E)$ if $s=0$, there exists $\omega \in B_{n-r, n-s-1}\left(\Omega, E^{\star}\right)$ such that $\bar{\partial} \omega=f$.
Proof. Let $f \in B_{n-r, n-s}\left(\Omega, E^{\star}\right)$ with $\bar{\partial} f=0$ for $1 \leq s \leq n-1$ and $\langle f, g\rangle=0$ for $s=0$ and $g \in \mathcal{H}_{r}(\Omega, E)$. Consider the form \mathcal{L}_{f} on the subspace of all η in $A_{r, s+1}(\Omega, E)$ with $\bar{\partial} \eta=0$, which exists by hypothesis on $A_{r, s+1}(\Omega, E)$ and is continuous by assumption.

By the Hahn-Banach extension theorem, it can be extended to the whole $A_{r, s+1}(\Omega, E)$. By duality, the extended form can be represented by a current $\omega \in B_{n-r, n-s-1}\left(\Omega, E^{\star}\right)$. Then we have

$$
\langle\eta, \omega\rangle=\langle\bar{\partial} g, \omega\rangle=\mathcal{L}_{f}(g)=\langle g, f\rangle .
$$

But $\langle\bar{\partial} g, \omega\rangle=(-1)^{r+s+1}\langle g, \bar{\partial} \omega\rangle$ and hence $\langle g, f\rangle=(-1)^{r+s+1}\langle g, \bar{\partial} \omega\rangle$ for all $g \in \mathcal{D}^{r, s}(\Omega, E)$. This means that $\bar{\partial} \omega=f$. The proof is complete.

3. Solving $\bar{\partial}$ with exact support in L^{p}

Let $\Omega \subset \subset X$ be a relatively compact domain with smooth boundary in a Kähler manifold X of complex dimension n and E be holomorphic Hermitian vector bundle of rank N over X. Let $\left\{U_{j_{\nu}}\right\}$ be a finite elements of the covering $\left\{U_{j}\right\}$ such that $\cup_{\nu} U_{j_{\nu}}$ cover $\bar{\Omega}$ and $\left\{\chi_{j_{\nu}}\right\}$ be a partition of unity subordinate to $\left\{U_{j_{\nu}}\right\}$. Then every E-valued (r, s)-form f can be identified with a system $\left\{f_{j_{\nu}}\right\}$ of vectors $f_{j_{\nu}}=\left(f_{j_{\nu}}^{1}, f_{j_{\nu}}^{2}, \ldots, f_{j_{\nu}}^{N}\right)$ of differential forms $f_{j_{\nu}}^{\mu}$ on $U_{j_{\nu}} \cap \Omega$. For $1 \leq p \leq \infty$, we denote by $L_{r, s}^{p}(\Omega, E)$ the Banach space of E-valued forms f of bidegree (r, s) on Ω for which $\|f\|_{L_{r, s}^{p}(\Omega, E)}<\infty$. The norm $\|f\|_{L_{r, s}^{p}(\Omega, E)}$ is defined by means of a partition of unity in the following way: On each $U_{j_{\nu}}$, we can choose an orthonormal basis $\omega^{1}, \ldots, \omega^{N}$ for the fibers E_{z} for every $z \in U_{j_{\nu}}$. In such a basis, the $L^{p}(\Omega, E)$-norm is defined by $\|f\|_{L_{r, s}^{p}(\Omega, E)}=\sum_{\mu=1}^{N} \sum_{j_{\nu}}\left\|\chi_{j_{\nu}} f_{j_{\nu}}^{\mu}\right\|_{L^{p}\left(U_{j_{\nu}} \cap \Omega\right)}$, where $\left\|\chi_{j_{\nu}} f_{j \nu}^{\mu}\right\|_{L_{r, s}\left(U_{j_{\nu}} \cap \Omega\right)}=$ $\underset{U_{j}}{\operatorname{ess} \sup }\left|\chi_{j_{\nu}} f^{\mu}\right|$. This norm depends on the choice of the coverings and their $U_{j_{\nu}} \cap \Omega$
local coordinates, however, as $\bar{\Omega}$ is compact, different choices give equivalent norms. The associated $\bar{\partial}$-cohomology group is denoted by $H_{L^{p}}^{r, s}(\Omega, E)$.

For $p \geq 1$, we denote by $L_{r, s}^{p, \text { loc }}(\Omega, E)$ the subspace of $\mathcal{D}_{\text {cur }}^{r, s}(\Omega, E)$ consisting of E-valued (r, s)-currents with coefficients in $L^{p, \operatorname{loc}}(\Omega)$ and endowed with the topology of L^{p}-convergence on compact subsets of Ω. Taking the restriction to $L_{r, s}^{p, \text { loc }}(\Omega)$ of the $\bar{\partial}$-operator in the sense of distributions we get an unbounded operator whose domain of definition is the set of forms f with $L^{p, \text { loc }}$-coefficients such that $\bar{\partial} f$ has also $L^{p, \text { loc }}$-coefficients, moreover, since $\bar{\partial} \circ \bar{\partial}=0$, we get a complex of unbounded operators $\left(L_{r, s}^{p, \text { loc }}(\Omega, E), \bar{\partial}\right)$. The associated $\bar{\partial}$-cohomology group is denoted by $H_{L^{p, \text { loc }}}^{r, s}(\Omega, E)$. By $L_{r, s}^{p, c}(\Omega, E)$, we denote the subspace of $L_{r, s}^{p, \text { loc }}(\Omega, E)$ consisting of forms with compact supports in Ω. We also consider the subcomplex $\left(L_{r, s}^{p, c}(\Omega, E), \bar{\partial}\right)$ of the previous one consisting of forms with compact supports. For all $k \geq 1$ and $1 \leq p \leq \infty$, the L^{p}-Sobolev spaces $W_{r, s}^{k, p}(\Omega, E)$ and their norms are defined in similar manner. Finally, for $1<p<\infty$ and p^{\prime} such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1, L_{n-r, n-s}^{p^{\prime}}\left(\Omega, E^{\star}\right)$ is the dual space of $L_{r, s}^{p}(\Omega, E)$ with respect to the duality pairing $\langle f, g\rangle=\int_{\Omega} f \wedge g$. Using a partition of unity, as in [3], we have the following duality theorem.
Theorem 3.1. For any p with $1 \leq p<\infty$ and p^{\prime} such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, $L_{n-r, n-s}^{p^{\prime}, c}\left(\Omega, E^{\star}\right)$ is the dual space of $L_{r, s}^{p, \operatorname{loc}}(\Omega, E)$ with respect to the duality pairing $\langle f, g\rangle=\int_{\Omega} f \wedge g$.

For $0 \leq r \leq n$ and $1 \leq s \leq n-1$, let $\bar{\partial}_{c}: L_{r, s}^{p}(\Omega, E) \rightarrow L_{r, s+1}^{p}(\Omega, E)$ be the minimal closed extension of $\left.\bar{\partial}\right|_{\mathcal{D}^{r, s}(\Omega, E)}$. The domain of $\bar{\partial}_{c}$ denoted $\operatorname{Dom}\left(\bar{\partial}_{c}\right)$ consists of those forms f in $L_{r, s}^{p}(\Omega, E)$ for which there exist a sequence $\left\{f_{i}\right\}$ of elements f_{i} in $\mathcal{D}^{r, s}(\Omega, E)$ and a form g in $L_{r, s+1}^{p}(\Omega, E)$ such that $f_{i} \rightarrow f$ and $\bar{\partial}_{c} f_{i} \rightarrow g$ in the $L^{p}(\Omega, E)$-norm. We then set $\bar{\partial}_{c} f=g$.

We consider also $\bar{\partial}_{s}: L_{r, s}^{p}(\Omega, E) \rightarrow L_{r, s+1}^{p}(\Omega, E)$ the minimal closed extension of $\left.\bar{\partial}\right|_{\left.\Lambda^{r, s}(X, E)\right|_{\Omega}}$, it is also a closed operator and $\operatorname{Dom}\left(\bar{\partial}_{s}\right)$ consists of those forms f in $L_{r, s}^{p}(\Omega, E)$ for which there exist a sequence $\left\{f_{i}\right\}$ of elements f_{i} in $\Lambda^{r, s}(\Omega, E)$ and a form $g \in L_{r, s+1}^{p}(\Omega, E)$ such that $f_{i} \rightarrow f$ and $\bar{\partial}_{s} f_{i} \rightarrow g$ in the $L^{p}(\Omega, E)$-norm. We then set $\bar{\partial}_{s} f=g$.

The operator $\bar{\partial}$ extends to $L_{r, s}^{p}(\Omega, E)$, in the sense of distributions, so we can consider the operators $\bar{\partial}_{\tilde{c}}: L_{r, s}^{p, s}(\Omega, E) \rightarrow L_{r, \underline{s}+1}^{p}(\Omega, E)$ and $\bar{\partial}: L_{r, s}^{p}(\Omega, E) \rightarrow$ $L_{r, s+1}^{p}(\Omega, E)$ which coincides with the original $\bar{\partial}$ such that

$$
\begin{aligned}
\operatorname{Dom}\left(\bar{\partial}_{\tilde{c}}\right) & =\left\{f \in L_{r, s}^{p}(X, E), \operatorname{supp} f \subset \bar{\Omega}, \bar{\partial} f \in L_{r, s+1}^{p}(X, E)\right\}, \quad \text { and } \\
\operatorname{Dom}(\bar{\partial}) & =\left\{f \in L_{r, s}^{p}(\Omega, E), \bar{\partial} f \in L_{r, s+1}^{p}(\Omega, E)\right\}
\end{aligned}
$$

We refer to [15, Chapter 4] for more details on maximal (minimal) closed extensions of differential operators.

Definition 3.2 (see e.g. [17]). A bounded domain D in a complex manifold X of complex dimension n is called a $\mathcal{C}^{d}(d \geq 2) q$-convex intersection $(q \geq 1)$ in the sense of Grauert if there exist a bounded neighborhood U of \bar{D} and a finite number of real-valued \mathcal{C}^{d} functions $\rho_{1}(z), \ldots, \rho_{b}(z)$, where $n \geq b+2$, defined on U such that

$$
D=\left\{z \in U \mid \rho_{1}(z)<0, \ldots, \rho_{b}(z)<0\right\}
$$

and the following conditions are fulfilled:
(1) For $1 \leq i_{1}<i_{2}<\cdots<i_{\ell} \leq b$ the 1 -forms $d \rho_{i_{1}}, \ldots, d \rho_{i_{\ell}}$ are \mathbb{R}-linearly independent on the set $\bigcap_{j=1}^{\ell}\left\{\rho_{i_{j}}(z) \leq 0\right\}$.
(2) For $1 \leq i_{1}<i_{2}<\cdots<i_{\ell} \leq b$ and every $z \in \bigcap_{j=1}^{\ell}\left\{\rho_{i_{j}}(z) \leq 0\right\}$, if we set $I=\left(i_{1}, \ldots, i_{\ell}\right)$, there exists a linear subspace T_{z}^{I} of X of complex dimension at least $n-q+1$ such that for $i \in I$ the Levi forms $L_{\rho_{i}}$ restricted on T_{z}^{I} are positive definite.

Theorem 3.3. Let $\Omega \subset \subset X$ be a $\mathcal{C}^{3} q$-convex intersection $(q \geq 1)$ in an n dimensional complex manifold X and E be a holomorphic Hermitian vector bundle of rank N over X. Then for any form f in $L_{r, s}^{p}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial}), 1 \leq$ $p \leq \infty, q \leq s \leq n-1$, there exist bounded linear operators \widetilde{T}_{s} from $L_{r, s}^{p}(\Omega, E)$ into $L_{r, s-1}^{p}(\Omega, E)$ and compact linear operators \widetilde{K}_{s} from $L_{r, s}^{p}(\Omega, E)$ into itself such that

$$
\begin{equation*}
f=\bar{\partial} \widetilde{T}_{s} f+\widetilde{K}_{s} f \quad \text { in } \Omega \tag{4}
\end{equation*}
$$

Furthermore, for all swith $q \leq s \leq n-1$, the $L^{p}-\bar{\partial}$-cohomology group $H_{L^{p}}^{r, s}(\Omega, E)$ is finite dimensional and the space $\bar{\partial}\left(L_{r, s-1}^{p}(\Omega, E)\right)$ is closed subspace of $L_{r, s}^{p}(\Omega, E)$.

Proof. Let $\Omega \subset \subset U \subset \subset \mathbb{C}^{n}$ be a $C^{3} q$-convex intersection with the defining functions $\left\{\rho_{i}\right\}_{i=1}^{b}$ and U as in Definition 3.2. Set

$$
\Omega_{I}=\left\{z \in U \mid \rho_{i}(z)<0, i \in I\right\} \quad \text { and } \quad S_{I}=\left\{z \in U \mid \rho_{i}(z)=0, i \in I\right\}
$$

For each $\xi \in S_{I}$ there exists a smoothly bounded strictly pseudoconvex domain D^{*} defined by $D^{*}=\left\{z \in U ; \rho_{*}(z)<0\right\}$ such that ∂D^{*} intersects real transversely $\left\{z \in U ; \rho_{i_{1}}(z)<0\right\}, \ldots,\left\{z \in U ; \rho_{i_{\ell}}(z)<0\right\}$ and $\xi \in D^{*}$.

Denote by I_{*} the multi-index $\left(i_{1} \ldots, i_{\ell}, *\right)$, where $I=\left(i_{1} \ldots, i_{\ell}\right), 1 \leq i_{1}<$ $\cdots<i_{\ell}<b$, and define

$$
\Omega_{I_{*}}=\left\{z \in U ; \rho_{j}(z)<0, j \in I_{*}\right\} .
$$

The domain $\Omega_{I_{*}}$ is still q-convex and is called a local q-convex intersection. Since Ω_{I} is q-convex intersection, for every $z \in \Omega_{I}$ there is then an $(n-q+1)$ linear vector subspace T_{z}^{I} of \mathbb{C}^{n} such that the Levi forms $L_{\rho_{i}}$ are positive definite on T_{z}^{I} for all $i \in I$. Therefore, by means of generalized BerndtssonAndersson formula with multiple weights, Lan Ma and Vassiliadou proved in [20] that if $f \in \mathcal{C}_{r, s}^{1}\left(\overline{\Omega_{I_{*}}}\right)$ with $\bar{\partial} f \in \mathcal{C}_{r, s+1}^{1}\left(\overline{\Omega_{I_{*}}}\right), 0 \leq r \leq n, q \leq s \leq n-1$, there exist local kernels $K_{s}^{\varepsilon}(\zeta, z)(\varepsilon>0)$ of bidegree (r, s) in z and of bidegree $(n-r, n-s-1)$ in ζ such that the map

$$
f \longmapsto \int_{\zeta \in \Omega_{I_{*}}} f(\zeta) \wedge K_{s-1}^{\varepsilon}(\zeta, z)
$$

defines a bounded linear operator $T_{s}: \mathcal{C}_{r, s}^{1}\left(\overline{\Omega_{I_{*}}}\right) \rightarrow \mathcal{C}_{r, s-1}^{1}\left(\overline{\Omega_{I_{*}}}\right)$, the map

$$
f \longmapsto \int_{\zeta \in \partial \Omega_{I_{*}}} f(\zeta) \wedge K_{s}^{\varepsilon}(\zeta, z)
$$

defines a compact linear operator $K_{s}: \mathcal{C}_{r, s}^{1}\left(\overline{\Omega_{I_{*}}}\right) \rightarrow \mathcal{C}_{r, s}^{1}\left(\overline{\Omega_{I_{*}}}\right)$ and the homotopy formula

$$
f=\bar{\partial} T_{s} f+T_{s+1} \bar{\partial} f+K_{s} f
$$

holds on $\Omega_{I_{*}}$ for every f in $\mathcal{C}_{r, s}^{1}\left(\overline{\Omega_{I_{*}}}\right)$ with $\bar{\partial} f$ in $\mathcal{C}_{r, s+1}^{1}\left(\overline{\Omega_{I_{*}}}\right)$.
Now we extend these operators to E-valued (r, s)-forms defined on q-convex intersections in complex manifolds. Let $\Omega \subset \subset X$ be a $\mathcal{C}^{3} q$-convex intersection $(q \geq 1)$ in an n-dimensional complex manifold X and E be a holomorphic Hermitian vector bundle over X. Cover $\bar{\Omega}$ by a finite number of open sets $V_{1}, V_{2}, \ldots, V_{m}$ such that $\bar{\Omega} \subseteq V_{1} \cup \cdots \cup V_{m}$ and for every $1 \leq j \leq m$ the intersection $V_{j} \cap \Omega$ is a local q-convex intersection, moreover, we may assume that E is trivial over some coordinates neighborhoods $z_{j}=\left(z_{j}^{1}, z_{j}^{2}, \ldots, z_{j}^{n}\right)$ of each $\overline{V_{j} \cap \Omega}$. Then, for every $f \in \mathcal{C}_{r, s}^{1}\left(\overline{\Omega \cap V_{j}}, E\right), q \leq s \leq n-1$, with $\bar{\partial} f=0$, there exist bounded linear operators

$$
T_{s}^{j}: \mathcal{C}_{r, s}^{1}\left(\overline{\Omega \cap V_{j}}, E\right) \longrightarrow \mathcal{C}_{r, s-1}^{1}\left(\overline{\Omega \cap V_{j}}, E\right)
$$

and compact operators

$$
K_{s}^{j}: \mathcal{C}_{r, s}^{1}\left(\overline{\Omega \cap V_{j}}\right) \rightarrow \mathcal{C}_{r, s}^{1}\left(\overline{\Omega \cap V_{j}}\right)
$$

such that the homotopy formulas

$$
f=\bar{\partial} T_{s}^{j} f+K_{s}^{j} f
$$

hold on $\Omega \cap V_{j}$ for all $f \in \mathcal{C}_{r, s}^{1}\left(\overline{\Omega \cap V_{j}}\right) \cap \operatorname{Ker}(\bar{\partial})$.
Choose a \mathcal{C}^{∞} partition of unity $\left\{\chi_{j}\right\}$ subordinate to the covering $\left\{V_{j}\right\}$ and define

$$
\widetilde{T}_{s} f=\sum_{j=1}^{m} \chi_{j} T_{s}^{j} f \quad \text { and } \quad \widetilde{K}_{s} f=\sum_{j=1}^{m} \chi_{j} K_{s}^{j} f
$$

for $f \in \mathcal{C}_{r, s}^{1}(\bar{\Omega}, E) \cap \operatorname{Ker}(\bar{\partial}), q \leq s \leq n-1$.
We then have
(5) $\quad f=\bar{\partial} \widetilde{T}_{s} f+\widetilde{K}_{s} f, \quad f \in \mathcal{C}_{r, s}^{1}(\bar{\Omega}, E) \cap \operatorname{Ker}(\bar{\partial}), \quad q \leq s \leq n-1$.

By using the L^{p}-estimates proved in [20] and the mollification method of Friedrichs (see e.g. [11]), the formula (5) extends to forms in $L_{r, s}^{p}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial})$ for all $1 \leq p \leq \infty$ and $q \leq s \leq n-1$. This proves (4). As the operators \widetilde{K}_{s} are compact operators from $L_{r, s}^{p}(\Omega, E)$ into itself, the operator $I d-\widetilde{K}_{s}$ is a Fredholm operator maps $L_{r, s}^{p}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial})$ into itself whose range is contained in $\bar{\partial}\left(L_{r, s-1}^{p}(\Omega, E)\right)$ by the formula (4) and hence the dimension of the cohomology group $H_{L^{p}}^{r, s}(\Omega, E)$ is smaller than the codimension of the range of $I d-\widetilde{K}_{s}$ which is finite. Therefore, the open mapping theorem implies that $\bar{\partial}\left(L_{r, s-1}^{p}(\Omega, E)\right)$ is a closed subspace of $L_{r, s}^{p}(\Omega, E)$. The proof is complete.

By using a partition of unity and the L^{p}-estimates obtained in [2, Theorem 0.1 , we have the following L^{p}-existence theorem.

Theorem 3.4. Let $\Omega \subset \subset X$ be a $C^{3} q$-convex intersection $(q \geq 1)$ in a Kähler manifold X of complex dimension n and E be a holomorphic Hermitian vector bundle of rank N over X. Then
(i) If E is Nakano semi-positive of type m on $\bar{\Omega}$, then for any $\bar{\partial}$-closed form f in $L_{n, s}^{1}(\Omega, E)$ there exists a form g in $L_{n, s-1}^{1}(\Omega, E)$ such that $\bar{\partial} g=f$ for all s so that $\max \{q, m\} \leq s \leq n-1$. Moreover, if f is in $L_{n, s}^{p}(\Omega, E), 1 \leq p \leq \infty$, then g is in $L_{n, s-1}^{p}(\Omega, E)$ and there is a constant $C_{s}>0$ (independent of f and p) such that

$$
\|g\|_{L_{n, s-1}^{p}(\Omega, E)} \leq C_{s}\|f\|_{L_{n, s}^{p}(\Omega, E)}, \quad 1 \leq p \leq \infty
$$

(ii) If E is Nakano semi-negative of type m on $\bar{\Omega}$, the assertion (i) holds for E-valued $(0, s)$-forms with L^{p}-coefficients, for all $q \leq s \leq n-m$, $1 \leq q, m \leq n-1$ and $n \geq 2$.
Since the q-convexity is stable with respect to small \mathcal{C}^{3} perturbations, we may assume that the defining functions ρ_{i} of Ω are Morse functions (i.e., all critical points of ρ_{i} are non-degenerate and if ζ_{1} and ζ_{2} are two different critical points of ρ_{i}, then $\left.\rho_{i}\left(\zeta_{1}\right)=\rho_{i}\left(\zeta_{2}\right)\right)$. Then we can approximate Ω from inside
by a sequence of $\mathcal{C}^{3} q$-convex intersections $\left\{\Omega_{k}\right\}$ such that $\Omega_{k} \subset \subset \Omega_{k+1} \subset \subset \Omega$ and $\Omega=\bigcup_{k} \Omega_{k}$. This approach is known as Grauert's bumping method where each Ω_{k+1} is obtained from Ω_{k} by an appropriate small bump (see e.g. [16] for the q-convex (q-concave) domains or [22] for q-convex intersections). Then, as in [19, Theorem 2.10], the next theorem follows immediately from Theorems 3.3 and 3.4.

Theorem 3.5. Let Ω, X and E be given as in Theorem 3.4. Then we have the following assertions.
(i) If E is Nakano semi-positive of type m on $\bar{\Omega}$, then for all s so that $\max \{q, m\} \leq s \leq n-1$, we have

$$
H_{L^{p}}^{n, s}(\Omega, E) \sim H_{L^{p, \text { loc }}}^{n, s}(\Omega, E) .
$$

(ii) If E is Nakano semi-negative of type m on $\bar{\Omega}$, then for all s so that $q \leq s \leq n-m, 1 \leq q, m \leq n-1, n \geq 2$, we have

$$
H_{L^{p}}^{0, s}(\Omega, E) \sim H_{L^{p, l o c}}^{0, s}(\Omega, E)
$$

We note that since every smooth domain in the complex plane is strictly pseudoconvex, the assertions (i) in Theorems 3.4 and 3.5 are still valid when $n=1$ and E is the trivial line bundle with the flat metric with $q=s=m=1$.

Following [19], we recall that for any two real numbers p and p^{\prime} so that $p>1$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ and any $r \in \mathbb{N}$ with $0 \leq r \leq n$, the complexes $\left(L_{r, \bullet}^{p}(\Omega, E), \bar{\partial}\right)$ and $\left(L_{n-r, \bullet}^{p^{\prime}}\left(\Omega, E^{*}\right), \bar{\partial}_{c}\right)$ are dual complexes. Moreover, we recall the following abstract result on duality.

Proposition 3.6. Let $\left(E^{\bullet}, d\right)$ and $\left(E_{\bullet}^{\prime}, d^{\prime}\right)$ be two dual complexes of reflexive Banach spaces with densely defined unbounded operators. Assume that $H_{s}\left(E_{\bullet}^{\prime}\right)$ is Hausdorff and $H_{s+1}\left(E_{\bullet}^{\prime}\right)=0$, then $H^{s+1}\left(E^{\bullet}\right)=0$.

Let $p, p^{\prime}>1$ be real numbers with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. It follows from Theorem 3.3 and Theorem 3.4(i) that the cohomology group $H_{L^{p^{\prime}}}^{n, s}(\Omega, E)$ is Hausdorff for all s such that $q \leq s \leq n-1$ and $H_{L^{p^{\prime}}}^{n, s}(\Omega, E)=0$ for all s such that $\max \{q, m\} \leq s \leq n-1$. Moreover, by Theorem 3.3 and Theorem 3.4(ii), we get that $H_{L^{p^{\prime}}}^{0, s}(\Omega, E)$ is Hausdorff for all $q \leq s \leq n-1$ and $H_{L^{p^{\prime}}}^{0, s}(\Omega, E)=0$ for all $q \leq s \leq n-m$, where $1 \leq q, m \leq n-1$ and $n \geq 2$.

End proof of Theorem 1.1. On applying Proposition 3.6 to the complex $\left(E^{\bullet}, d\right)$ with, for fixed r so that $0 \leq r \leq n, E^{s}=L_{r, s}^{p^{\prime}}\left(\Omega, E^{*}\right)$ if $0 \leq s \leq n$ and $E^{s}=\{0\}$ if $s<0$ or $s>n$, and $d=\bar{\partial}_{\tilde{c}}$, we deduce that the cohomological hypotheses of Theorem 2.20 in [19] are satisfied in the current situations. This implies L^{p}-solvability for the $\bar{\partial}$-equation with exact support on a q-convex intersection in a complex manifold, and this completes the proof of Theorem 1.1.

4. $\bar{\partial}$-closed extensions of forms in L^{p}

As an application of Theorem 1.1, we obtain a Hartogs-like extension theorem for $\bar{\partial}$-closed forms.

Theorem 4.1. Let $\Omega \subset \subset X$ be a $C^{3} q$-convex intersection $(q \geq 1)$ in a Kähler manifold X of complex dimension $n \geq 3$ such that $X \backslash \Omega$ is connected. Let E be a holomorphic Hermitian vector bundle of rank N over X.
(1) If E is Nakano semi-positive of type m on $\bar{\Omega}$, then for every $\bar{\partial}$-closed form f in $W_{0, s}^{1, p^{\prime}}\left(X \backslash \Omega, E^{*}\right), 1 \leq s \leq \min \{n-q, n-m\}, 2 \leq q, m \leq n-1$, there exists a form F in $L_{0, s}^{p^{\prime}}\left(X, E^{*}\right)$ such that $\left.F\right|_{X \backslash \Omega}=f$ and $\bar{\partial} F=0$ in X in the distribution sense.

For $s=n-1$, if we assume furthermore that the restriction of f to $\partial \Omega$ satisfies the moment condition

$$
\int_{\partial \Omega} f \wedge \phi=0, \quad \forall \phi \in L_{n, 0}^{p}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial})
$$

then the same statement holds.
(2) If E is Nakano semi-negative of type m on $\bar{\Omega}$, then statement (1) holds for all $\bar{\partial}$-closed form f in $W_{n, s}^{1, p^{\prime}}\left(X \backslash \Omega, E^{*}\right)$ for $m \leq s \leq n-q$ and $2 \leq q, m \leq n-1$.

For $s=n-1$, the same statement holds true if we assume furthermore that f satisfies the moment condition

$$
\int_{\partial \Omega} f \wedge \phi=0, \quad \forall \phi \in L_{n, 0}^{p}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial})
$$

Proof. We consider the assertion in (1), i.e., the case when E is Nakano semipositive of type m on $\bar{\Omega}$, as the defining functions ρ_{i} of Ω are of class \mathcal{C}^{3}, there is a bounded extension operator of $W_{0, s}^{k, p^{\prime}}\left(X \backslash \Omega, E^{*}\right)$ into $W_{0, s}^{k, p^{\prime}}\left(X, E^{*}\right)$ for all $k \geq 0$ and $1 \leq p^{\prime}<\infty$ (see e.g. [8, Theorem 9.7]). Let $\tilde{f} \in W_{0, s}^{1, p^{\prime}}\left(X, E^{*}\right)$ be the extension of f such that $\left.\tilde{f}\right|_{X \backslash \Omega}=f$. Then $\bar{\partial} \tilde{f}$ is in $L_{0, s+1}^{p^{\prime}}\left(X, E^{*}\right)$ and is compactly supported in $\bar{\Omega}$. In view of Theorem 1.1, there exists a form g in $L_{0, s}^{p^{\prime}}\left(X, E^{*}\right)$ with compact support in $\bar{\Omega}$ such that $\bar{\partial} g=\bar{\partial} \tilde{f}$ in the distribution sense in X. Set $F=\tilde{f}-g$, we have $\bar{\partial} F=0$ in $X,\left.F\right|_{X \backslash \Omega}=f$ and F is compactly supported in $\bar{\Omega}$. Thus the form $F \in L_{0, s}^{p^{\prime}}\left(X, E^{*}\right)$ is the desired $\bar{\partial}$-closed extension of f to X. The assertion in (2) follows on using similar arguments. This completes the proof.

Corollary 4.2. Let Ω_{1} and Ω_{2} be two strictly q-convex and q^{*}-convex intersections with smooth \mathcal{C}^{∞} boundaries in an $n \geq 3$-dimensional Kähler manifold X, respectively, such that $\bar{\Omega}_{2} \subset \Omega_{1} \subset \subset X$. Assume that $H_{L^{p}}^{r, s}(X)=0$. Then for any $\bar{\partial}$-closed form f in $W_{r, s}^{1, p}\left(\Omega_{1} \backslash \bar{\Omega}_{2}\right)$ there exists a form u in
$W_{r, s-1}^{1, p}\left(\Omega_{1} \backslash \bar{\Omega}_{2}\right) \cap W_{r, s}^{\frac{1}{2}, p}\left(\Omega_{1} \backslash \bar{\Omega}_{2}\right)$ such that $\bar{\partial} u=f$ in $\Omega_{1} \backslash \bar{\Omega}_{2}$, where $r \geq 0$, $q^{*} \leq s \leq n-q-1$.

References

[1] O. Abdelkader and S. Khidr, Solutions to $\bar{\partial}$-euations on stronly pseudo-convex domains with L^{p}-estimates, Electron. J. Differential Equations 2004 (2004), no. 73, 1-9.
$[2] \quad, S o l u t i o n s ~ t o ~ \bar{\partial}$-equations on strongly q-convex domains with L^{p}-estimates, Int. J. Geom. Methods Mod. Phys. 1 (2004), no. 6, 739-749.
[3] E. Amar, An Andreotti-Grauert theorem with L^{r} estimates, arXiv: 1203.0759v7, 2014.
[4] E. Amar and S. Mongodi, On L^{r} hypoellipticity of solutions with compact support of the Cauchy-Riemann equation, Ann. Mat. Pura Appl. 193 (2014), no. 4, 999-1018.
[5] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem I: Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), no. 2, 325-363.
[6] , E. E. Levi convexity and the Hans Lewy problem II: Vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), no. 4, 747-806.
[7] A. Andreotti and A. Kas, Duality on complex spaces, Ann. Scoula Norm. Sup. Pisa (3) 27 (1973), no. 2, 187-263.
[8] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2010.
[9] J. Brinkschulte, The $\bar{\partial}$-problem with support conditions on some weakly pseudoconvex domains, Ark. Mat. 42 (2004), no. 2, 259-282.
[10] D. Chakrabarti and M.-C. Shaw, L^{2} Serre duality on domains in complex manifolds and applications, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3529-3554.
[11] S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Stud. Adv. Math., 19, Amer. Math. Soc. Providence, R.I., 2001.
[12] M. Derridj, Le problème de Cauchy pour $\bar{\partial}$ et application, Ann Sci. École Norm. Sup. (4) $\mathbf{1 7}$ (1984), no. 3, 439-449.
[13] , Regularité pour $\bar{\partial}$ dans quelques domaines faiblement pseudo-convexes, J. Differential Geom. 13 (1978), no. 4, 559-576.
[14] __ , Inégalités de Carleman et extension locale des fonctions holomorphes, Ann. Scuola Sup. Pisa Cl. Sci. (4) 9 (1982), no. 4, 645-669.
[15] G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, SpringerVerlag, New York, 2009.
[16] G. M. Henkin and J. Leiterer, Andreoutti-Grauert Theory by Integral Formulas, Progress in Math. 74, Birkhäuser-Verlag, Boston, 1988.
[17] S. Khidr, Solving $\bar{\partial}$ with L^{p}-estimates on q-convex intersections in complex manifold, Complex Var. Elliptic Equ. 53 (2008), no. 3, 253-263.
[18] M. Landucci, Cauchy Problem for $\bar{\partial}$-operator in strictly pseudoconvex domains, Boll. Un. Mat. Ital. (5) 13A (1976), no. 1, 180-185.
[19] C. Laurent-Thiébaut, Théorie L ${ }^{p}$ pour l'équation de Cauchy-Riemann, Ann. Fac. Sci. Toulouse Math. (6) 24 (2015), no. 2, 251-279.
[20] L. Ma and S. K. Vassiliaduo, L ${ }^{p}$-estimates for the Cauchy-Riemann operator on q convex intersections in \mathbb{C}^{n}, Manuscr. Math. 103 (2000), no. 4, 413-433.
[21] C. Menini, Estimations pour la résolution du $\bar{\partial}$ sur une intersection d'Ouverts strictement pseudoconvexes, Math. Z. 225 (1997), no. 1, 87-93.
[22] H. Ricard, Estimations \mathcal{C}^{k} pour l'Opérator de Cauchy-Riemann sur des domaines à Coins q-Convexes et q-Concaves, Math. Z. 244 (2003), no. 2, 349-398.
[23] S. Sambou, Résolution du $\bar{\partial}$ pour les courants prolongeables, Math. Nachr. 235 (2002), no. 1, 179-190.
[24] Fac. Sci. Toulouse Math. (6) 11 (2002), no. 1, 105-129.

Shaban Khidr
Mathematics Department
Faculty of Science
University of Jeddah
21589 Jeddah, Saudi Arabia
AND
Mathematics Department
Faculty of Science
Beni-Suef University
62511 Beni-Suef, Egypt
E-mail address: skhidr@science.bsu.edu.eg

[^0]: Received October 28, 2016; Accepted August 4, 2017.
 2010 Mathematics Subject Classification. Primary 32F10, 32W05.
 Key words and phrases. L^{p}-estimates, solution with exact support, q-convex intersection, Serre duality.

