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LP-ESTIMATES FOR THE 9-EQUATION WITH EXACT
SUPPORT ON g-CONVEX INTERSECTIONS

SHABAN KHIDR

ABSTRACT. We construct bounded linear integral operators that giving
solutions to the J-equation in LP-spaces and with compact supports on
a g-convex intersection (¢ > 1) with C3 boundary in Kihler manifolds,
and we apply it to obtain a Hartogs-like extension theorems for O-closed
forms for some bidegree.

1. Introduction

The problem of solving 0 with exact support was initiated for differential
forms by Andreotti and Hill in [5] and [6]. Later, it has been widely investigated
(cf. [11], [12], [13] and [18]). More precisely, let & CC X be a relatively
compact domain in a complex manifold X of complex dimension n and E be a
holomorphic Hermitian vector bundle over X. If Q is a bounded pseudoconvex
domain in C*, Chen and Shaw proved in [11, Chapter 9] that for any d-closed
(r,s)-form f with L? (or C*) coefficients in C" and compactly supported in €,
there exists a form w in L2 | (C") (or in €25, _;(C™)) such that u is compactly
supported in  and Ou = finC* for0<r<mnand1<s<n-—1. When Qis
a bounded domain with Lipschitz boundary and satisfies a convexity condition
called log d-pseudoconvex in an n-dimensional K&hler manifold X, Brinkschulte
proved in [9] that if f is a O-closed E-valued (r, s)-form with C*-coefficients in
X and with compact support in Q, then there exists a (r, s — 1)-form u with
C>-coefficients in X and with compact support in Q such that du = f in X,
for0 <r<nand1l<s<n-—1. Moreover, she proved that the range of the
J-operator acting on the subspace of (r,n— 1)-forms of class C* and compactly
supported in € is closed.

Analogous results to those of [9] have been obtained by Sambou in [23] for
C-valued (r, s)-forms with compact support in 2 when € is a completely strictly
g-convex domain (0 < ¢ < n — 1) with smooth boundary in an n-dimensional
complex manifold X for all 1 < s < ¢q. This domain is defined in the sense
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of Henkin by Q@ = {z € U|p(z) < 0} where p is a smooth function defined
on an open neighborhood U of  whose Levi form has at least ¢ + 1 positive
eigenvalues everywhere (see e.g. [16]). In addition, he showed that the range
of the J-operator acting on the subspace of C* (r, s — 1)-forms with compact
support in § is closed for 1 < s < g+ 1. Further, he proved that the d-equation
is solvable on such domain for extensible currents of bidegree (n,n — s) for all
s with 1 < n—gq < s < n. Furthermore, the case for strictly g-concave domains
is dealt by the author in [24].

It worth also to mention that solving the d-equation with prescribed support
enables one to obtain dj-closed extensions of forms from boundaries of bounded
domains (see e.g. [9], [10], [11] and [14]).

Solving 0 with compact support in LP-spaces (or the so called the weak LP
0-Cauchy problem) is formulated by giving a d-closed form f in L? (X, E)
with compact support in Q, 0 < r <n, 1 < s < n and p > 1, the problem is
then to find a form v in LF (X, E) such that

r,s—1

(1)

Ou = f in the weak sense in X,
{ supp u C Q.

This problem was solved by Amar and Mongodi in [4] for C-valued forms on
Stein open domains of the form D™ \ Z in C", where D" is a polydisc and
Z is the zero locus of some holomorphic function, and by Amar in [3] for
weakly p-regular domains in Stein manifolds. In [19], Laurent-Thiébaut gave
some general cohomological and geometric conditions on X and 2 under which
(1) can be solved. In particular, she solved (1) for C-valued (r, s)-forms on
completely ¢-convex domains in complex manifolds for all 1 < s < n — ¢ (See
Corollary 2.23 in [19]).

The plane of the paper is as follows. We first extend some complex anal-
ysis results of Amar [3] to E-valued currents on relatively compact domains
in Kéhler manifolds. Next, via a partition of unity, we globalize the local
compact integral homotopy operators constructed in [20] for the d-equation to
get global ones for E-valued forms on a C? g-convex intersection €2 in an n-
dimensional Kihler manifold X. We moreover show that the LP-0-cohomology
group Hj, (€, E) is finite dimensional and the space 5(Lf’371(9, E)) is closed
subspace of L (€2, F) for all ¢ < s <n— 1. By using these integral homotopy
formulas, we then solve the O-equation with global LP-estimates for d-closed E-
valued forms of type (n,s) with 1 < s <min{n—¢,n—m}and1 < ¢g,m <n-—1
(respectively of type (0,s) with m <s<n—-—qgand1<¢gm<n-1)if E
is Nakano semi-positive (respectively Nakano semi-negative) of type m on Q
(see Theorem 3.4 below). This result generalizes some results of [17] to E-
valued forms for some bidegree. Combining these results together with some
arguments inspired from Laurent-Thiébaut [19], we have the following main
theorem.
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Theorem 1.1. Let Q CC X be a C? g-convex intersection (1 < qg<n—1) in
an n-dimensional Kdahler manifold X with n > 2 and E be a holomorphic Her-
mitian vector bundle over X such that X \ Q is connected. Then the following
assertions hold true.

(i) If E is Nakano semi-positive of type m (1 < m < n —1) on Q, then
for any O-closed form f in Lgys(X, E*) such that f is supported in €2,

there exists a form u in Lg:sq(Xv E*) supported in Q such that Ou = f
in X, for 1 <s <min{n —q,n —m}. B B

(ii) If E is Nakano semi-negative of type m on ), then for any 0-closed
form f in Lﬁ:s(X, E*) with compact in Q, there exists a form u in
LY (X, E*) with compact support in Q such that Ou = f in X, for

n,s—1

m<s<n-—gq.

This result generalizes Corollary 2.23 of Laurent-Thiébaut [19] (which was
obtained for C-valued (r,s)-forms, 0 < r < n, 1 < s < n — ¢, on completely
g-convex domains (¢ > 1) in complex manifolds) to more general g-convex
domains and to E*-valued forms for some bidegree.

Remark 1.2. We note that max{q,m} = 1 means that m = ¢ = 1. The case
m = 1 implies that E is Nakano-positive on ©, then there is a Kihler metric on
Q, so the Kihlerity assumption is automatically satisfied (see e.g. [1]) and ¢ = 1
means that  is a strictly pseudoconvex domain with piecewise C3-boundary
(see e.g. [21]). Therefore the assertion (i) in Theorem 1.1 for this case still valid

if X is replaced by any complex manifold of complex dimension n > 2.

Actually, the Kéhlerity property of X and the positivity assumptions on
E play a crucial role in the proof of our results, these conditions ensure the
L?-existence theorem for the d-equation in our setting (see [2]).

In addition, by using these results, we prove a Hartogs-like theorem for 0-
closed forms in LP-setting with p > 1 (see Theorem 4.1 below). This result gen-
eralizes the result of Theorem 5 in [10] which was obtained for C-valued forms
with coefficients in the usual L2-Sobolev spaces W*, k > 0, on bounded pseu-
doconvex domains with Lipschitz boundaries in Stein manifolds. As a results,
we finally solve the O-equation for forms with W 'P-coefficients on an annulus
type domain between two strictly ¢-convex domains with smooth boundaries
in a Kihler manifold. This result was also proved in [10] for forms with W*-
coefficients on an annulus domain between two pseudoconvex domains in a
Stein manifold.

2. Preliminaries

In this section, we fix notations, definitions, and auxiliary results that will be
used throughout the paper. Let X be a complex manifold of complex dimension
n and F be a holomorphic Hermitian vector bundle of rank N over X. Let
{U;};j € I, be an open covering of X consisting of coordinates neighborhoods
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U; with holomorphic coordinates z; = (2}, 22 z1') over which FE is trivial,

VERVARRRRRY
namely, 7~ 1(U;) = U; x CV. The N-dimensional complex vector space E, =
771(2); 2 € X, is called the fiber of E over z. Let h be a Hermitian metric
along the fibers of F that defined by a system of Hermitian matrix-valued

positive C* functions {h;}; h; = (hju;). Denote by (h”ﬁ) the inverse matrix
v v v ahju

of (hj,ﬁ,). Let 6 = {6;}; 6; = (6%,), 6%, = Y0 SN Wy % gzo and

= {0,}; 6, = (@?u)v 0}, = v—-19d0logh; = v/—1 Za,ﬁ:1 ;’Maﬁdz A

d_j, where @;’uaﬂ = %(h;ﬁ ag;?,—,)’ 1 < p, v < N, be the connection and

curvature forms associated to the metric h. The curvature matrix is given by

HjﬁB,ua - Z hﬂm®]ya5

Definition 2.1 (see e.g. [2]). Let E be a holomorphic Hermitian vector bundle
of rank N over a complex manifold X of complex dimension n.
(a) E issaid to be Nakano m-positive (respectively m-negative), at « € Uj,
if there exists an (n—m-+1)-dimensional subspace S, of the holomorphic
tangent T, (X) such that the Hermitian form

(2) Z [3 ya g Cﬁ

is positive (respectively negative) definite for any ¢ = (¢%) € S, ®
E.; ¢ #0.

(b) E is said to be Nakano semi-positive (respectively semi-negative), at
x € Uj, if the Hermitian form (2) is positive (respectively negative)
semi-definite for any ¢ = (¢¥%) € T,(X) ® E,.

(¢) E is said to be Nakano semi-positive (respectively semi-negative) of
type m if E is both Nakano semi-positive and Nakano m-positive (re-
spectively Nakano semi-negative and Nakano m-negative) at .

For all 0 < r,s < n, we denote by A™*(X, E) the space of E-valued forms of
bidegree (r, s) and of class C* on X with the topology of uniform convergence
of forms and all their derivatives on compact subsets of X and by D™*(X, F) the
subspace of A™*(X, F) consisting of forms with compact supports in X. The
associated cohomologies groups are denoted by H™*(X, E) and H.*(X, E) re-
spectively. Let K be a compact subset of X and D3°(X, E) the closed subspace
of A™*(X, E) of forms with supports in K endowed with the induced topology.
Let {K;};en be an increasing sequence of compact subsets of X such that
K; ¢ K2,y and |JK; = X. Then D™*(X, E) = U DR’ (X, E). We put on

€N =1
D"*(X, E) the strict inductive limit topology defined by the spaces Dy’ (X, E).
If ¢ € A™5(X, E), then dp = {dg;}, where dp; = (¢}, 0¢3,...,00Y). Let
ds? be a Kihler metric on X defined by

n
2= Z 9jap dz;-‘dif,

a,f=1



LP-ESTIMATES FOR § WITH EXACT SUPPORT 33

where g;,5 is a C*-section of T*(X) ® T*(X) on U;. For ¢,¢ € A™*(M,E),
we define a local inner product, at z € U;, by

Zhw% ) Axt (2) = alp(z), v (2))dv,

v,u=1

where the Hodge star operator x and the volume element dv are defined by
ds? and a(p, 1) is a function on X independent of j. For p,p € D¥(X,E), a
global inner product is then defined by (¢,v¢) = [y a(e,)dv. Let LZ (X, E)
be the Hilbert space obtained by completing the space D™*(X, E) under the
norm [ = (¢, ¢).

We now extend the complex analysis results obtained in [3] to domains in
complex manifolds. Let 2 CC X be a bounded domain with smooth boundary
in a Kéhler manifold X of complex dimension n, F be a holomorphic Hermitian
vector bundle of rank N over X, and E* be the dual vector bundle of E. The
space of E*-valued currents of bidegree (n — r,n — s) (or bidimension (r, s))
denoted by D2 ""5(Q, E*) is the topological dual to the space D™*(Q, E).

cur

The J-operator is defined from D ™"~%(Q, E*) into DI ™"~ *T1(Q, E*) as
the transpose of the original d-operator from D™*(Q, E) into D™*T1((Q, E)
The topological dual to the space A™*(Q2, E) denoted by A7 5"7°(2, £*) is

the space of E*-valued currents of of bidegree (n — r,n — s) with compact
supports in €. The restriction of the J-operator to AT (Q, B gives

unbounded operator 9 : AL n"T(Q, E*) — AL T §+1(Q E~*). For further
details on duality for complexes of topological vector spaces, we refer to [7] and
the references therein.

Let A, 4(Q, E) be a topological space of E-valued (r,s)-forms on © and

Al (9, E) be its dual. Assume that the injections
D E) = A (QE) = D" (Q,E)

being continuous. Then B, ., (2, E*) = A} (Q, E) still a space of currents
and asking that the duality pairing (¢,v) = fQ ¢ A1 be 0 compatible with
currents, i.e., V ¢ € D53(, E) and ¢ € D"~ ""s71(Q, E*),

(09, 9) = (1) (g, ).

For 0 < r < n, 1< s < n, we recall that the equation dg = f is solvable
in A, ,(Q, E) if for any O-closed form f in A, (9, E) there exists a form g
in A, s—1(9Q, E) such that Jg = f in Q. Suppose now that the J-equation is
solvable in A, (2, F) and A, ;41 (2, E) for all 1 < s < n—1. Let u be a
O-closed form in By _rn—s(2, E*) and consider the form

(3) L,(n)={g,u) VneA 1(QE), on=0,

with dg = 7, which exists by hypothesis. Denote by H,(Q, E), the space of
E-valued 0-closed (r,0)-forms on 2. Then we have:
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Lemma 2.2. The form L, defined by (3), with (g,u) = 0 for s = 0 and
g € H,.(Q, E), is well defined and linear.

Proof. In order to prove that the form £, is well defined, we have to show that
(g,u) = (h,u) if g,h € A, 5(Q, E) with dg = Oh.

We consider first the case when 1 < s < n. Let g,h € A, ;(Q, E) be such
that g = Oh = 7, then the difference g — h is a d-closed form in A, 4(Q, E).
By hypothesis, there exists ¢ € A, ,_1(Q, E) such that d¢ = g — h. Hence,

(g — h,u) = (0¢,u) = (—1)""(¢, Qu) = 0.

Thus £, is also well defined for all s > 1.

For s = 0, we have du = 0 (because u is an (n — r,n)-form). Again, let
g, h € A.0(Q,E) with g = Oh, hence g — h is a O-closed (r,0)-form, i.e.,
g—h € H,.(Q, E). Since, by hypothesis, u L. H,.(Q, E), we have (g — h,u) = 0.
Then £, is also well defined in this case.

Next, we show that the form £, is linear, let 77 and 72 be in A, s41(£2, E)
such that 9n; = 9ny = 0 and put n = 1, + 72, then Oy = 0 and so there
are g , g1 and go in A, 4(Q, E) such that 9g = 1, dg1 = m and dga = 7no.
Thus 9(g — g1 — g2) = 0 and hence there is a form h in Ay s—1(, E) such that
g = g1 + g2 + Oh, therefore

Lu(n) = (g, u) = (g1+92+0h,u) = (g1, w) + (g2, u) + (O, u) = Lu(m)+Lu(n2),

where (Oh,u) = (—=1)"**(h,0u) = 0. Similarly for An; A € C. The proof is
complete. 0

Following [3], the equation du = 7 is continuously solvable in A, ¢11(€, E)
if it is solvable in A, 4(Q, E) and A, s4+1(€2, E)_and7 moreover, if the form £, (n)
is continuously linear on the subspace of all 0-closed forms 7 in A, ;11(€, E).

Theorem 2.3. If the O-equation is continuously solvable in A, c11(2, E), then
it is solvable in By_, ,—s(2, E*), that is, for any f € Bp_yn—s(Q, E*) with
Of =0if1 <s<n—1and (f,g) =0 forall g € H,(UE) if s =0, there
exists w € By _pn—s—1(Q, E*) such that Ow = f.

Proof. Let f € Bp_yn_s(Q, E*) with 0f =0 for 1 <s<n—1and (f,g) =0
for s =0 and g € H,(Q, E). Consider the form L on the subspace of all 7 in
Ay s+1(Q, E) with 9n = 0, which exists by hypothesis on A, ;11(Q, E) and is
continuous by assumption.

By the Hahn-Banach extension theorem, it can be extended to the whole
A, s41(2, E). By duality, the extended form can be represented by a current
w € Bp_rn-s—1(8, E*). Then we have

(n,w) = (9g,w) = Ls(g9) = (g, f)-

But (dg,w) = (—1)""**!(g,0w) and hence (g, f) = (—1)""5*!(g,dw) for all
g € D™*(Q, E). This means that dw = f. The proof is complete. O
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3. Solving 9 with exact support in LP

Let 2 CC X be a relatively compact domain with smooth boundary in
a Kahler manifold X of complex dimension n and E be holomorphic Her-
mitian vector bundle of rank N over X. Let {U;, } be a finite elements of
the covering {U;} such that U,U;, cover 2 and {x;,} be a partition of unity
subordinate to {U;, }. Then every E-valued (r,s)-form f can be identified
with a system {f;, } of vectors f;, = ( jly, J-Qy, ceey fﬁ) of differential forms fJ“u
on U;, N For 1 < p < oo, we denote by L? (€2, ) the Banach space of
E-valued forms f of bidegree (r,s) on Q for which [|f||zz (o .z < oo. The
norm || f{|zr (,p) is defined by means of a partition of unity in the following

way: On each Uj,, we can choose an orthonormal basis wh ..., w for the

fibers E, for every z € U;,. In such a basis, the LP(Q, E)-norm is defined

by [ flle o.m) = 22;1 >, X6, fi lee @, ne) where [[x;, £, |l Lee, 0, n0) =

esssup |x;, f#|. This norm depends on the choice of the coverings and their
Jv

local coordinates, however, as  is compact, different choices give equivalent

norms. The associated J-cohomology group is denoted by H; (L E).

For p > 1, we denote by L‘,?;LOC(Q, E) the subspace of D5 (2, E) consisting
of E-valued (r, s)-currents with coefficients in LP''°°(Q) and endowed with the
topology of LP-convergence on compact subsets of 2. Taking the restriction to
LP:lec(Q) of the d-operator in the sense of distributions we get an unbounded
operator whose domain of definition is the set of forms f with LP-'°°-coefficients
such that df has also LP°-coefficients, moreover, since od = 0, we get a com-
plex of unbounded operators (L%LOC(Q, E),é). The associated 0-cohomology
group is denoted by HZ’;]OC(Q, E). By Lf;;(Q,E), we denote the subspace of
L{Z:;OC(Q,E) consisting of forms with compact supports in 2. We also con-
sider the subcomplex (L2:¢(Q, E),d) of the previous one consisting of forms
with compact supports. For all £ > 1 and 1 < p < oo, the LP-Sobolev
spaces W,ff’sp(Q,E) and their norms are defined in similar manner. Finally,

for 1 < p < oo and p’ such that % + % =1, Lﬁl_r’n_s(Q,E*) is the dual space

of L (R, E) with respect to the duality pairing (f,g) = [, f A g. Using a
partition of unity, as in [3], we have the following duality theorem.

Theorem 3.1. For any p with 1 < p < oo and p’ such that 1% + 1% =1,

Lre (Q, E*) is the dual space of LE:°°(Q, E) with respect to the duality

n—r,n—s

pairing (f,g) = [o f N g.

For0<r<nand1<s<n-—1,let d.: L. (Q E)— L' (9, E) be the
minimal closed extension of J|pr.s(q ). The domain of J. denoted Dom(0.)
consists of those forms f in LY (Q, F) for which there exist a sequence {f;} of
elements f; in D™*(S2, E) and a form g in L7 (2, E) such that f; — f and
Ocfi — g in the LP(Q, E)-norm. We then set d.f = g.
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We consider also 0, : L2 (0, E) — LV
sion of 5‘AT,S(X,E)|Q, it is also a closed operator and Dom(d,) consists of those
forms f in L? (2, E) for which there exist a sequence {f;} of elements f; in

A™*(Q, F) and a form g € Lf7s+1(Q, E) such that f; — f and 0,f; — ¢ in the
LP(Q), E)-norm. We then set 0, f = g.

The operator 9 extends to L (€2, E), in the sense of distributions, so we
can consider the operators 0z : L ((Q, E) — L} o1 (Q, E) and d:LP (QLE)—

L? .1(€, E) which coincides with the original d such that

(©, E) the minimal closed exten-

Dom(d;:) = {f € LY (X, E),supp [ C Q, 0f € Lf’Sﬂ(X, E)}, and

Dom(@) = {f € Lf,s(Q7E)a 5f € Lf,erl(Qv E)}

We refer to [15, Chapter 4] for more details on maximal (minimal) closed ex-
tensions of differential operators.

Definition 3.2 (see e.g. [17]). A bounded domain D in a complex manifold X
of complex dimension n is called a C? (d > 2) g-convex intersection (¢ > 1) in
the sense of Grauert if there exist a bounded neighborhood U of D and a finite
number of real-valued C? functions py(2),...,pp(2), where n > b+ 2, defined
on U such that

D={z€U|pi(2) <0,...,p(2) <0}
and the following conditions are fulfilled:

(1) For 1 <4y <ig < --- < iy < b the 1-forms dp;,,...,dp;, are R-linearly

¢
independent on the set [ {p;;(z) < 0}.
j=1
¢
(2) For 1 <y <y < --- < iy < bandevery z € () {p;(2) <0}, if we
j=1
set I = (i1,...,iz), there exists a linear subspace T! of X of complex
dimension at least n — ¢ 4+ 1 such that for ¢ € I the Levi forms L,,
restricted on T! are positive definite.

Theorem 3.3. Let Q CC X be a C® g-convex intersection (¢ > 1) in an n-
dimensional complex manifold X and E be a holomorphic Hermitian vector

bundle of rank N over X. Then for any form f in L (Q, E) NKer(d), 1 <
p< oo, q<s<n-—1, there exist bounded linear operators i; from L£7S(Q, E)
into L¥ (U, E) and compact linear operators K, from LY (2, E) into itself

r,s—1

such that
(4) f=0T.f+K.f in Q.

Furthermore, for all s withq < s <n-—1, the LP-0-cohomology group H[ (Q,E)
is finite dimensional and the space G(Lfysfl(Q,E)) is closed subspace of
LY (Q,E).
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Proof. Let Q cC U cC C" be a C? g-convex intersection with the defining
functions {p;}?_, and U as in Definition 3.2. Set

Qr={z€U|pi(z)<0,iel} and S;={z€U|pi(z)=0,1i€el}.

For each & € Sy there exists a smoothly bounded strictly pseudoconvex do-
main D* defined by D* = {z € U, p.(z) < 0} such that D* intersects real
transversely {z € U; p;,(2) < 0},...,{z € U; p;,(z) < 0} and £ € D*.

Denote by I, the multi-index (i1 ...,14g,*), where I = (i1...,4p), 1 < i1 <
-+ < iy < b, and define

Qr, ={2€U; p;(2) <0, j € L}

The domain €2, is still g-convex and is called a local g-convex intersection.
Since 2 is g-convex intersection, for every z € € there is then an (n — g+ 1)-
linear vector subspace T of C™ such that the Levi forms L,, are positive
definite on T for all i € I. Therefore, by means of generalized Berndtsson-
Andersson formula with multiple weights, Lan Ma and Vassiliadou proved in
[20] that if f € C} () with 9f € C},,1(Qr,),0<r <mn,¢<s<n-—1,
there exist local kernels K2(¢,z) (¢ > 0) of bidegree (r, s) in z and of bidegree
(n—r,n—s—1) in ¢ such that the map

fr— FONKS1(C2)

Cey,
defines a bounded linear operator T : C; ((Q7,) = C},_1(Qy.), the map
fr— FONEKZ(C2)
Ceoy,

defines a compact linear operator K : C} ((Q7,) — C} ,(Qr,) and the homotopy
formula

[ =0Tsf +Ts+18f + K f
holds on Q;, for every f in C} (Q;,) with 8f in C} .1 (9y.).

Now we extend these operators to E-valued (r, s)-forms defined on g-convex
intersections in complex manifolds. Let Q CC X be a C? g-convex intersection
(g > 1) in an n-dimensional complex manifold X and E be a holomorphic
Hermitian vector bundle over X. Cover Q by a finite number of open sets
Vi,Va,..., Vi, such that QCViu---UV, and for every 1 < j < m the
intersection V; N Q) is a local g-convex intersection, moreover, we may assume
that E is trivial over some coordinates neighborhoods z; = (zjl, ZJZ-, R ZJ”) of
each V; N Q). Then, for every f € C}VS(QD Vi,E),q<s<n-—1,with 9f =0,
there exist bounded linear operators

T :C.,(QNV,,E) —C.,_1(QNV;,E)

r,s—1
and compact operators

K]:Cp (QNV)) =€ (QNVj)
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such that the homotopy formulas
f=0Tif+Kif
hold on QNV; for all f € C},(2NV;) NKer(d).

Choose a C* partition of unity {x;} subordinate to the covering {V;} and
define

Tf=> x;Tif and K. f=Y x;Kif
Jj=1 j=1
for f € Ci)s(ﬁ, E)NKer(d),¢<s<n-—1.
We then have

(5) f=0T.f+K.,f, fGCivs(ﬁ,E)ﬂKer(é), g<s<n-1.
By using the LP-estimates proved in [20] and the mollification method of

Friedrichs (see e.g. [11]), the formula (5) extends to forms in L (2, E)NKer(0)
forall 1 <p <ooand ¢ <s<n-—1. This proves (4). As the operators K, are
compact operators from L? (€, ) into itself, the operator Id — K is a Fred-

holm operator maps L? (€2, E') N Ker(9) into itself whose range is contained in

(L?

+.s—1(Q, E)) by the formula (4) and hence the dimension of the cohomology
group H;J (2, E) is smaller than the codimension of the range of Id— I?S which
is finite. Therefore, the open mapping theorem implies that 8(Lf’871(§2, E))is

a closed subspace of L? (€2, ). The proof is complete. O

By using a partition of unity and the LP-estimates obtained in [2, Theorem
0.1], we have the following LP-existence theorem.

Theorem 3.4. Let Q CC X be a C® g-convex intersection (¢ > 1) in a Kihler
manifold X of complex dimension n and E be a holomorphic Hermitian vector
bundle of rank N over X. Then
(i) If E is Nakano semi-positive of type m on Q, then for any 0-closed
form fin L), (0, E) there exists a form g in L}, . (Q, E) such that
dg = f for all s so that max{q,m} < s < n — 1. Moreover, if f is
in Lb (QE), 1 < p < oo, then g is in L}, . (Q, E) and there is a
constant Cs > 0 (independent of f and p) such that

lgllize 0.m) < Csllflles .o, 1<p< oo

(ii) If E is Nakano semi-negative of type m on Q, the assertion (i) holds
for E-valued (0, s)-forms with LP-coefficients, for all ¢ < s < n —m,
1<gm<n-—1andn>2.

Since the g-convexity is stable with respect to small C® perturbations, we
may assume that the defining functions p; of  are Morse functions (i.e., all
critical points of p; are non-degenerate and if (; and (> are two different critical
points of p;, then p;(¢1) = pi({2)). Then we can approximate ) from inside
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by a sequence of C3 g-convex intersections {2} such that 2 CC Q1 CC Q
and Q = |J, Q. This approach is known as Grauert’s bumping method where
each Q11 is obtained from € by an appropriate small bump (see e.g. [16] for
the g-convex (g-concave) domains or [22] for ¢-convex intersections). Then, as
in [19, Theorem 2.10], the next theorem follows immediately from Theorems
3.3 and 3.4.

Theorem 3.5. Let 2, X and E be given as in Theorem 3.4. Then we have
the following assertions.

(i) If E is Nakano semi-positive of type m on ), then for all s so that
max{q,m} < s <n-—1, we have
HP(Q,E) ~ H 2o (U E).
(ii) If E is Nakano semi-negative of type m on Q, then for all s so that
g<s<n—m,1<gm<n-—1,n2>2, we have
HPS(QE) ~ H)?S L (2, E).
We note that since every smooth domain in the complex plane is strictly
pseudoconvex, the assertions (i) in Theorems 3.4 and 3.5 are still valid when
n =1 and E is the trivial line bundle with the flat metric with ¢ = s =m = 1.

Following [19], we recall that for any two real numbers p and p’ so that p > 1
and % + ﬁ =1 and any r € N with 0 < r < n, the complexes (L} 4(Q, E), )

and (L? , (2, E*),0.) are dual complexes. Moreover, we recall the following

n—r,e

abstract result on duality.

Proposition 3.6. Let (E®,d) and (E,,d") be two dual complezes of reflexive
Banach spaces with densely defined unbounded operators. Assume that Hy(E.)
is Hausdorff and Hey1(E,) =0, then HTY(E®) = 0.

Let p,p’ > 1 be real numbers with % + ﬁ = 1. It follows from Theorem
3.3 and Theorem 3.4(i) that the cohomology group H,7(f, E) is Hausdorff
for all s such that ¢ < s < n—1and H /(2 E) = 0 for all s such that
max{g,m} < s < n — 1. Moreover, by Theorem 3.3 and Theorem 3.4(ii), we
get that Hz’ps, (Q, E) is Hausdorff for all ¢ < s <n —1 and HEPS, (Q,E) =0 for
allg<s<n—m,wherel <¢g,m<n-—1andn > 2.

End proof of Theorem 1.1. On applying Proposition 3.6 to the complex (E*®, d)
with, for fixed r so that 0 <r <n, £ = L’T’:S(Q, E*)if0 < s <mnand E* = {0}
if s <0ors>n,and d= 0 we deduce that the cohomological hypotheses
of Theorem 2.20 in [19] are satisfied in the current situations. This implies
LP-solvability for the J-equation with exact support on a g-convex intersection
in a complex manifold, and this completes the proof of Theorem 1.1. (I
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4. d-closed extensions of forms in LP

As an application of Theorem 1.1, we obtain a Hartogs-like extension theo-
rem for d-closed forms.

Theorem 4.1. Let Q CC X be a C3 g-convex intersection (¢ > 1) in a Kihler
manifold X of complex dimension n > 3 such that X \ Q is connected. Let E
be a holomorphic Hermitian vector bundle of rank N over X.

(1) If E is Nakano semi-positive of type m on Q, then for every 0-closed
form f in Woly’f (X\Q,E*), 1 <s <min{n—g,n—-m},2<q,m<n—1,
there exists a form F in Lg:S(X7 E*) such that F|x\q = f and F =0
in X in the distribution sense.

For s =n—1, if we assume furthermore that the restriction of f to
0N) satisfies the moment condition

fAp=0, VoL, (QE)N Ker(0),
a0

then the same statement holds.

(2) If E is Nakano semi-negative of type m on Q, then statement (1) holds
for all O-closed form f in Wﬁ:g’/ (X\QE") form < s <n-—gq and
2<qg,m<n-—1.

For s =n — 1, the same statement holds true if we assume further-
more that f satisfies the moment condition

fAp=0, V ¢ocL (2E)N Ker(9).
a0

Proof. We consider the assertion in (1), i.e., the case when E is Nakano semi-
positive of type m on €, as the defining functions p; of Q are of class C3, there
is a bounded extension operator of W(i P(X\Q,E*) into W(i P (X, E*) for all
k>0and 1<p < oo (seeeg. [8 Theorem 9.7]). Let f € I/Volv’f/(X7 E*) be
the extension of f such that ﬂX\Q = f. Then 5f is in Lg:sH(X, E*) and is
compactly supported in Q. In view of Theorem 1.1, there exists a form ¢ in
Lg’S(X , E*) with compact support in Q such that dg = df in the distribution
sense in X. Set F = f — g, we have OF = 0 in X, Flx\o = [ and F is
compactly supported in . Thus the form F € LS:S(X , E*) is the desired
O-closed extension of f to X. The assertion in (2) follows on using similar
arguments. This completes the proof. (]

Corollary 4.2. Let )y and Qs be two strictly q-convexr and q*-convex inter-
sections with smooth C*° boundaries in an n > 3-dimensional Kdhler mani-
fold X, respectively, such that Q2 C 3 CC X. Assume that H;,(X) = 0.
Then for any O-closed form f in W&f’(ﬂl \ Qo) there ewists a form u in
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WhP (1 \ Q) N T%S’p(Ql \ Q2) such that du = f in Q1 \ Qa, where r >0,

r,s—

¢ <s<n—-q-—1
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