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Lp-ESTIMATES FOR THE ∂̄-EQUATION WITH EXACT

SUPPORT ON q-CONVEX INTERSECTIONS

Shaban Khidr

Abstract. We construct bounded linear integral operators that giving

solutions to the ∂̄-equation in Lp-spaces and with compact supports on
a q-convex intersection (q ≥ 1) with C3 boundary in Kähler manifolds,

and we apply it to obtain a Hartogs-like extension theorems for ∂̄-closed

forms for some bidegree.

1. Introduction

The problem of solving ∂̄ with exact support was initiated for differential
forms by Andreotti and Hill in [5] and [6]. Later, it has been widely investigated
(cf. [11], [12], [13] and [18]). More precisely, let Ω ⊂⊂ X be a relatively
compact domain in a complex manifold X of complex dimension n and E be a
holomorphic Hermitian vector bundle over X. If Ω is a bounded pseudoconvex
domain in Cn, Chen and Shaw proved in [11, Chapter 9] that for any ∂̄-closed
(r, s)-form f with L2 (or C∞) coefficients in Cn and compactly supported in Ω,
there exists a form u in L2

r,s−1(Cn) (or in C∞r,s−1(Cn)) such that u is compactly

supported in Ω and ∂̄u = f in Cn, for 0 ≤ r ≤ n and 1 ≤ s ≤ n− 1. When Ω is
a bounded domain with Lipschitz boundary and satisfies a convexity condition
called log δ-pseudoconvex in an n-dimensional Kähler manifold X, Brinkschulte
proved in [9] that if f is a ∂̄-closed E-valued (r, s)-form with C∞-coefficients in
X and with compact support in Ω, then there exists a (r, s − 1)-form u with
C∞-coefficients in X and with compact support in Ω such that ∂̄u = f in X,
for 0 ≤ r ≤ n and 1 ≤ s ≤ n − 1. Moreover, she proved that the range of the
∂̄-operator acting on the subspace of (r, n−1)-forms of class C∞ and compactly
supported in Ω is closed.

Analogous results to those of [9] have been obtained by Sambou in [23] for
C-valued (r, s)-forms with compact support in Ω when Ω is a completely strictly
q-convex domain (0 ≤ q ≤ n − 1) with smooth boundary in an n-dimensional
complex manifold X for all 1 ≤ s ≤ q. This domain is defined in the sense
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of Henkin by Ω = {z ∈ U | ρ(z) < 0} where ρ is a smooth function defined
on an open neighborhood U of Ω whose Levi form has at least q + 1 positive
eigenvalues everywhere (see e.g. [16]). In addition, he showed that the range
of the ∂̄-operator acting on the subspace of C∞ (r, s − 1)-forms with compact
support in Ω is closed for 1 ≤ s ≤ q+1. Further, he proved that the ∂̄-equation
is solvable on such domain for extensible currents of bidegree (n, n− s) for all
s with 1 ≤ n− q ≤ s ≤ n. Furthermore, the case for strictly q-concave domains
is dealt by the author in [24].

It worth also to mention that solving the ∂̄-equation with prescribed support
enables one to obtain ∂̄b-closed extensions of forms from boundaries of bounded
domains (see e.g. [9], [10], [11] and [14]).

Solving ∂̄ with compact support in Lp-spaces (or the so called the weak Lp

∂̄-Cauchy problem) is formulated by giving a ∂̄-closed form f in Lpr,s(X,E)

with compact support in Ω, 0 ≤ r ≤ n, 1 ≤ s ≤ n and p ≥ 1, the problem is
then to find a form u in Lpr,s−1(X,E) such that

(1)

{
∂̄u = f in the weak sense in X,
supp u ⊂ Ω.

This problem was solved by Amar and Mongodi in [4] for C-valued forms on
Stein open domains of the form Dn \ Z in Cn, where Dn is a polydisc and
Z is the zero locus of some holomorphic function, and by Amar in [3] for
weakly p-regular domains in Stein manifolds. In [19], Laurent-Thiébaut gave
some general cohomological and geometric conditions on X and Ω under which
(1) can be solved. In particular, she solved (1) for C-valued (r, s)-forms on
completely q-convex domains in complex manifolds for all 1 ≤ s ≤ n − q (See
Corollary 2.23 in [19]).

The plane of the paper is as follows. We first extend some complex anal-
ysis results of Amar [3] to E-valued currents on relatively compact domains
in Kähler manifolds. Next, via a partition of unity, we globalize the local
compact integral homotopy operators constructed in [20] for the ∂̄-equation to
get global ones for E-valued forms on a C3 q-convex intersection Ω in an n-
dimensional Kähler manifold X. We moreover show that the Lp-∂̄-cohomology
group Hr,s

Lp (Ω, E) is finite dimensional and the space ∂̄
(
Lpr,s−1(Ω, E)

)
is closed

subspace of Lpr,s(Ω, E) for all q ≤ s ≤ n− 1. By using these integral homotopy

formulas, we then solve the ∂̄-equation with global Lp-estimates for ∂̄-closed E-
valued forms of type (n, s) with 1 ≤ s ≤ min{n−q, n−m} and 1 ≤ q,m ≤ n−1
(respectively of type (0, s) with m ≤ s ≤ n − q and 1 ≤ q,m ≤ n − 1) if E
is Nakano semi-positive (respectively Nakano semi-negative) of type m on Ω
(see Theorem 3.4 below). This result generalizes some results of [17] to E-
valued forms for some bidegree. Combining these results together with some
arguments inspired from Laurent-Thiébaut [19], we have the following main
theorem.
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Theorem 1.1. Let Ω ⊂⊂ X be a C3 q-convex intersection (1 ≤ q ≤ n− 1) in
an n-dimensional Kähler manifold X with n ≥ 2 and E be a holomorphic Her-
mitian vector bundle over X such that X \Ω is connected. Then the following
assertions hold true.

(i) If E is Nakano semi-positive of type m (1 ≤ m ≤ n − 1) on Ω, then

for any ∂̄-closed form f in Lp
′

0,s(X,E
∗) such that f is supported in Ω,

there exists a form u in Lp
′

0,s−1(X,E∗) supported in Ω such that ∂̄u = f

in X, for 1 ≤ s ≤ min{n− q, n−m}.
(ii) If E is Nakano semi-negative of type m on Ω, then for any ∂̄-closed

form f in Lp
′

n,s(X,E
∗) with compact in Ω, there exists a form u in

Lp
′

n,s−1(X,E∗) with compact support in Ω such that ∂̄u = f in X, for
m ≤ s ≤ n− q.

This result generalizes Corollary 2.23 of Laurent-Thiébaut [19] (which was
obtained for C-valued (r, s)-forms, 0 ≤ r ≤ n, 1 ≤ s ≤ n − q, on completely
q-convex domains (q ≥ 1) in complex manifolds) to more general q-convex
domains and to E∗-valued forms for some bidegree.

Remark 1.2. We note that max{q,m} = 1 means that m = q = 1. The case
m = 1 implies that E is Nakano-positive on Ω, then there is a Kähler metric on
Ω, so the Kählerity assumption is automatically satisfied (see e.g. [1]) and q = 1
means that Ω is a strictly pseudoconvex domain with piecewise C3-boundary
(see e.g. [21]). Therefore the assertion (i) in Theorem 1.1 for this case still valid
if X is replaced by any complex manifold of complex dimension n ≥ 2.

Actually, the Kählerity property of X and the positivity assumptions on
E play a crucial role in the proof of our results, these conditions ensure the
L2-existence theorem for the ∂̄-equation in our setting (see [2]).

In addition, by using these results, we prove a Hartogs-like theorem for ∂̄-
closed forms in Lp-setting with p ≥ 1 (see Theorem 4.1 below). This result gen-
eralizes the result of Theorem 5 in [10] which was obtained for C-valued forms
with coefficients in the usual L2-Sobolev spaces W k, k ≥ 0, on bounded pseu-
doconvex domains with Lipschitz boundaries in Stein manifolds. As a results,
we finally solve the ∂̄-equation for forms with W 1,p-coefficients on an annulus
type domain between two strictly q-convex domains with smooth boundaries
in a Kähler manifold. This result was also proved in [10] for forms with W k-
coefficients on an annulus domain between two pseudoconvex domains in a
Stein manifold.

2. Preliminaries

In this section, we fix notations, definitions, and auxiliary results that will be
used throughout the paper. Let X be a complex manifold of complex dimension
n and E be a holomorphic Hermitian vector bundle of rank N over X. Let
{Uj}; j ∈ I, be an open covering of X consisting of coordinates neighborhoods
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Uj with holomorphic coordinates zj = (z1
j , z

2
j , . . . , z

n
j ) over which E is trivial,

namely, π−1(Uj) = Uj × CN . The N -dimensional complex vector space Ez =
π−1(z); z ∈ X, is called the fiber of E over z. Let h be a Hermitian metric
along the fibers of E that defined by a system of Hermitian matrix-valued
positive C∞ functions {hj}; hj = (hjµη̄). Denote by (hµη̄j ) the inverse matrix

of (hjµη̄). Let θ = {θj}; θj = (θνjµ), θνjµ =
∑n
α=1

∑N
η=1 h

νη̄
j
∂hjµη̄
∂zαj

dzαj and

Θ = {Θj}; Θj = (Θν
jµ), Θν

jµ =
√
−1∂̄∂ log hj =

√
−1
∑n
α,β=1 Θν

jµαβ̄
dzαj ∧

dz̄βj , where Θν
jµαβ̄

= − ∂

∂z̄βj
(hνη̄j

∂hjµη̄
∂zαj

), 1 ≤ µ, ν ≤ N , be the connection and

curvature forms associated to the metric h. The curvature matrix is given by

Hjη̄β̄,να =
∑N
µ=1 hjµη̄Θµ

jναβ̄
.

Definition 2.1 (see e.g. [2]). Let E be a holomorphic Hermitian vector bundle
of rank N over a complex manifold X of complex dimension n.

(a) E is said to be Nakano m-positive (respectively m-negative), at x ∈ Uj ,
if there exists an (n−m+1)-dimensional subspace Sx of the holomorphic
tangent Tx(X) such that the Hermitian form

(2)
∑

Hjη̄β̄,να(x)ζναζ̄
η
β

is positive (respectively negative) definite for any ζ = (ζνα) ∈ Sx ⊗
Ex; ζ 6= 0.

(b) E is said to be Nakano semi-positive (respectively semi-negative), at
x ∈ Uj , if the Hermitian form (2) is positive (respectively negative)
semi-definite for any ζ = (ζνα) ∈ Tx(X)⊗ Ex.

(c) E is said to be Nakano semi-positive (respectively semi-negative) of
type m if E is both Nakano semi-positive and Nakano m-positive (re-
spectively Nakano semi-negative and Nakano m-negative) at x.

For all 0 ≤ r, s ≤ n, we denote by Λr,s(X,E) the space of E-valued forms of
bidegree (r, s) and of class C∞ on X with the topology of uniform convergence
of forms and all their derivatives on compact subsets ofX and byDr,s(X,E) the
subspace of Λr,s(X,E) consisting of forms with compact supports in X. The
associated cohomologies groups are denoted by Hr,s(X,E) and Hr,s

c (X,E) re-
spectively. Let K be a compact subset of X and Dr,sK (X,E) the closed subspace
of Λr,s(X,E) of forms with supports in K endowed with the induced topology.
Let {Ki}i∈N be an increasing sequence of compact subsets of X such that

Ki ⊂ K◦i+1 and
⋃
i∈N

Ki = X. Then Dr,s(X,E) =
∞⋃
i=1

Dr,sKi(X,E). We put on

Dr,s(X,E) the strict inductive limit topology defined by the spaces Dr,sKi(X,E).

If ϕ ∈ Λr,s(X,E), then ∂̄ϕ = {∂̄ϕj}, where ∂̄ϕj = (∂̄ϕ1
j , ∂̄ϕ

2
j , . . . , ∂̄ϕ

N
j ). Let

ds2 be a Kähler metric on X defined by

ds2 =

n∑
α,β=1

gjαβ̄ dz
α
j dz̄

β
j ,
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where gjαβ̄ is a C∞-section of T ?(X) ⊗ T̄ ?(X) on Uj . For ϕ,ψ ∈ Λr,s(M,E),
we define a local inner product, at z ∈ Uj , by

N∑
ν,µ=1

hjνµ̄ϕ
ν
j (z) ∧ ?ψµj (z) = a(ϕ(z), ψ(z))dv,

where the Hodge star operator ? and the volume element dv are defined by
ds2 and a(ϕ,ψ) is a function on X independent of j. For ϕ,ψ ∈ Dr,s(X,E), a
global inner product is then defined by (ϕ,ψ) =

∫
X
a(ϕ,ψ)dv. Let L2

r,s(X,E)
be the Hilbert space obtained by completing the space Dr,s(X,E) under the
norm ‖ϕ‖2 = (ϕ,ϕ).

We now extend the complex analysis results obtained in [3] to domains in
complex manifolds. Let Ω ⊂⊂ X be a bounded domain with smooth boundary
in a Kähler manifold X of complex dimension n, E be a holomorphic Hermitian
vector bundle of rank N over X, and E∗ be the dual vector bundle of E. The
space of E?-valued currents of bidegree (n − r, n − s) (or bidimension (r, s))
denoted by Dn−r,n−scur (Ω, E?) is the topological dual to the space Dr,s(Ω, E).
The ∂̄-operator is defined from Dn−r,n−scur (Ω, E?) into Dn−r,n−s+1

cur (Ω, E?) as
the transpose of the original ∂̄-operator from Dr,s(Ω, E) into Dr,s+1(Ω, E).
The topological dual to the space Λr,s(Ω, E) denoted by Λn−r,n−sc,cur (Ω, E?) is
the space of E?-valued currents of of bidegree (n − r, n − s) with compact
supports in Ω. The restriction of the ∂̄-operator to Λn−r,n−sc,cur (Ω, E?) gives

unbounded operator ∂̄ : Λn−r,n−sc,cur (Ω, E?) → Λn−r,n−s+1
c,cur (Ω, E?). For further

details on duality for complexes of topological vector spaces, we refer to [7] and
the references therein.

Let Ar,s(Ω, E) be a topological space of E-valued (r, s)-forms on Ω and
A′r,s(Ω, E) be its dual. Assume that the injections

Dr,s(Ω, E) ↪→ Ar,s(Ω, E) ↪→ Dn−r,n−scur (Ω, E)

being continuous. Then Bn−r,n−s(Ω, E
?) = A′r,s(Ω, E) still a space of currents

and asking that the duality pairing 〈φ, ψ〉 =
∫

Ω
φ ∧ ψ be ∂̄ compatible with

currents, i.e., ∀ φ ∈ Dr,scur(Ω, E) and ψ ∈ Dn−r,n−s−1(Ω, E?),

〈∂̄φ, ψ〉 = (−1)r+s+1〈φ, ∂̄ψ〉.

For 0 ≤ r ≤ n, 1 ≤ s ≤ n, we recall that the equation ∂̄g = f is solvable
in Ar,s(Ω, E) if for any ∂̄-closed form f in Ar,s(Ω, E) there exists a form g
in Ar,s−1(Ω, E) such that ∂̄g = f in Ω. Suppose now that the ∂̄-equation is
solvable in Ar,s(Ω, E) and Ar,s+1(Ω, E) for all 1 ≤ s ≤ n − 1. Let u be a
∂̄-closed form in Bn−r,n−s(Ω, E

?) and consider the form

(3) Lu(η) = 〈g, u〉 ∀ η ∈ Ar,s+1(Ω, E), ∂̄η = 0,

with ∂̄g = η, which exists by hypothesis. Denote by Hr(Ω, E), the space of
E-valued ∂̄-closed (r, 0)-forms on Ω. Then we have:



34 S. KHIDR

Lemma 2.2. The form Lu defined by (3), with 〈g, u〉 = 0 for s = 0 and
g ∈ Hr(Ω, E), is well defined and linear.

Proof. In order to prove that the form Lu is well defined, we have to show that
〈g, u〉 = 〈h, u〉 if g, h ∈ Ar,s(Ω, E) with ∂̄g = ∂̄h.

We consider first the case when 1 ≤ s ≤ n. Let g, h ∈ Ar,s(Ω, E) be such
that ∂̄g = ∂̄h = η, then the difference g − h is a ∂̄-closed form in Ar,s(Ω, E).
By hypothesis, there exists φ ∈ Ar,s−1(Ω, E) such that ∂̄φ = g − h. Hence,

〈g − h, u〉 = 〈∂̄φ, u〉 = (−1)r+s〈φ, ∂̄u〉 = 0.

Thus Lu is also well defined for all s ≥ 1.
For s = 0, we have ∂̄u = 0 (because u is an (n − r, n)-form). Again, let

g, h ∈ Ar,0(Ω, E) with ∂̄g = ∂̄h, hence g − h is a ∂̄-closed (r, 0)-form, i.e.,
g− h ∈ Hr(Ω, E). Since, by hypothesis, u ⊥ Hr(Ω, E), we have 〈g − h, u〉 = 0.
Then Lu is also well defined in this case.

Next, we show that the form Lu is linear, let η1 and η2 be in Ar,s+1(Ω, E)
such that ∂̄η1 = ∂̄η2 = 0 and put η = η1 + η2, then ∂̄η = 0 and so there
are g , g1 and g2 in Ar,s(Ω, E) such that ∂̄g = η, ∂̄g1 = η1 and ∂̄g2 = η2.
Thus ∂̄(g − g1 − g2) = 0 and hence there is a form h in Ar,s−1(Ω, E) such that
g = g1 + g2 + ∂̄h, therefore

Lu(η) = 〈g, u〉 = 〈g1+g2+∂̄h, u〉 = 〈g1, u〉+〈g2, u〉+〈∂̄h, u〉 = Lu(η1)+Lu(η2),

where 〈∂̄h, u〉 = (−1)r+s〈h, ∂̄u〉 = 0. Similarly for λη; λ ∈ C. The proof is
complete. �

Following [3], the equation ∂̄u = η is continuously solvable in Ar,s+1(Ω, E)
if it is solvable in Ar,s(Ω, E) and Ar,s+1(Ω, E) and, moreover, if the form Lu(η)
is continuously linear on the subspace of all ∂̄-closed forms η in Ar,s+1(Ω, E).

Theorem 2.3. If the ∂̄-equation is continuously solvable in Ar,s+1(Ω, E), then
it is solvable in Bn−r,n−s(Ω, E

?), that is, for any f ∈ Bn−r,n−s(Ω, E
?) with

∂̄f = 0 if 1 ≤ s ≤ n − 1 and 〈f, g〉 = 0 for all g ∈ Hr(Ω, E) if s = 0, there
exists ω ∈ Bn−r,n−s−1(Ω, E?) such that ∂̄ω = f .

Proof. Let f ∈ Bn−r,n−s(Ω, E?) with ∂̄f = 0 for 1 ≤ s ≤ n− 1 and 〈f, g〉 = 0
for s = 0 and g ∈ Hr(Ω, E). Consider the form Lf on the subspace of all η in
Ar,s+1(Ω, E) with ∂̄η = 0, which exists by hypothesis on Ar,s+1(Ω, E) and is
continuous by assumption.

By the Hahn-Banach extension theorem, it can be extended to the whole
Ar,s+1(Ω, E). By duality, the extended form can be represented by a current
ω ∈ Bn−r,n−s−1(Ω, E?). Then we have

〈η, ω〉 = 〈∂̄g, ω〉 = Lf (g) = 〈g, f〉.

But 〈∂̄g, ω〉 = (−1)r+s+1〈g, ∂̄ω〉 and hence 〈g, f〉 = (−1)r+s+1〈g, ∂̄ω〉 for all
g ∈ Dr,s(Ω, E). This means that ∂̄ω = f . The proof is complete. �
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3. Solving ∂̄ with exact support in Lp

Let Ω ⊂⊂ X be a relatively compact domain with smooth boundary in
a Kähler manifold X of complex dimension n and E be holomorphic Her-
mitian vector bundle of rank N over X. Let {Ujν} be a finite elements of

the covering {Uj} such that ∪νUjν cover Ω and {χjν} be a partition of unity
subordinate to {Ujν}. Then every E-valued (r, s)-form f can be identified
with a system {fjν} of vectors fjν = (f1

jν
, f2
jν
, . . . , fNjν ) of differential forms fµjν

on Ujν ∩ Ω. For 1 ≤ p ≤ ∞, we denote by Lpr,s(Ω, E) the Banach space of
E-valued forms f of bidegree (r, s) on Ω for which ‖f‖Lpr,s(Ω,E) < ∞. The

norm ‖f‖Lpr,s(Ω,E) is defined by means of a partition of unity in the following

way: On each Ujν , we can choose an orthonormal basis ω1, . . . , ωN for the
fibers Ez for every z ∈ Ujν . In such a basis, the Lp(Ω, E)-norm is defined

by ‖f‖Lpr,s(Ω,E) =
∑N
µ=1

∑
jν
‖χjνf

µ
jν
‖Lp(Ujν∩Ω), where ‖χjνf

µ
jν‖L∞r,s(Ujν∩Ω) =

ess sup
Ujν∩Ω

|χjνfµ|. This norm depends on the choice of the coverings and their

local coordinates, however, as Ω is compact, different choices give equivalent
norms. The associated ∂̄-cohomology group is denoted by Hr,s

Lp (Ω, E).
For p ≥ 1, we denote by Lp,loc

r,s (Ω, E) the subspace of Dr,scur(Ω, E) consisting

of E-valued (r, s)-currents with coefficients in Lp,loc(Ω) and endowed with the
topology of Lp-convergence on compact subsets of Ω. Taking the restriction to
Lp,loc
r,s (Ω) of the ∂̄-operator in the sense of distributions we get an unbounded

operator whose domain of definition is the set of forms f with Lp,loc-coefficients
such that ∂̄f has also Lp,loc-coefficients, moreover, since ∂̄◦∂̄ = 0, we get a com-
plex of unbounded operators

(
Lp,loc
r,s (Ω, E), ∂̄

)
. The associated ∂̄-cohomology

group is denoted by Hr,s
Lp,loc(Ω, E). By Lp,cr,s(Ω, E), we denote the subspace of

Lp,loc
r,s (Ω, E) consisting of forms with compact supports in Ω. We also con-

sider the subcomplex
(
Lp,cr,s(Ω, E), ∂̄

)
of the previous one consisting of forms

with compact supports. For all k ≥ 1 and 1 ≤ p ≤ ∞, the Lp-Sobolev
spaces W k,p

r,s (Ω, E) and their norms are defined in similar manner. Finally,

for 1 < p <∞ and p′ such that 1
p + 1

p′ = 1, Lp
′

n−r,n−s(Ω, E
?) is the dual space

of Lpr,s(Ω, E) with respect to the duality pairing 〈f, g〉 =
∫

Ω
f ∧ g. Using a

partition of unity, as in [3], we have the following duality theorem.

Theorem 3.1. For any p with 1 ≤ p < ∞ and p′ such that 1
p + 1

p′ = 1,

Lp
′,c
n−r,n−s(Ω, E

?) is the dual space of Lp,loc
r,s (Ω, E) with respect to the duality

pairing 〈f, g〉 =
∫

Ω
f ∧ g.

For 0 ≤ r ≤ n and 1 ≤ s ≤ n− 1, let ∂̄c : Lpr,s(Ω, E)→ Lpr,s+1(Ω, E) be the

minimal closed extension of ∂̄|Dr,s(Ω,E). The domain of ∂̄c denoted Dom(∂̄c)
consists of those forms f in Lpr,s(Ω, E) for which there exist a sequence {fi} of

elements fi in Dr,s(Ω, E) and a form g in Lpr,s+1(Ω, E) such that fi → f and

∂̄cfi → g in the Lp(Ω, E)-norm. We then set ∂̄cf = g.
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We consider also ∂̄s : Lpr,s(Ω, E) → Lpr,s+1(Ω, E) the minimal closed exten-

sion of ∂̄|Λr,s(X,E)|Ω , it is also a closed operator and Dom(∂̄s) consists of those
forms f in Lpr,s(Ω, E) for which there exist a sequence {fi} of elements fi in

Λr,s(Ω, E) and a form g ∈ Lpr,s+1(Ω, E) such that fi → f and ∂̄sfi → g in the

Lp(Ω, E)-norm. We then set ∂̄sf = g.
The operator ∂̄ extends to Lpr,s(Ω, E), in the sense of distributions, so we

can consider the operators ∂̄c̃ : Lpr,s(Ω, E)→ Lpr,s+1(Ω, E) and ∂̄ : Lpr,s(Ω, E)→
Lpr,s+1(Ω, E) which coincides with the original ∂̄ such that

Dom(∂̄c̃) = {f ∈ Lpr,s(X,E), supp f ⊂ Ω, ∂̄f ∈ Lpr,s+1(X,E)}, and

Dom(∂̄) = {f ∈ Lpr,s(Ω, E), ∂̄f ∈ Lpr,s+1(Ω, E)}.

We refer to [15, Chapter 4] for more details on maximal (minimal) closed ex-
tensions of differential operators.

Definition 3.2 (see e.g. [17]). A bounded domain D in a complex manifold X
of complex dimension n is called a Cd (d ≥ 2) q-convex intersection (q ≥ 1) in
the sense of Grauert if there exist a bounded neighborhood U of D and a finite
number of real-valued Cd functions ρ1(z), . . . , ρb(z), where n ≥ b + 2, defined
on U such that

D = {z ∈ U | ρ1(z) < 0, . . . , ρb(z) < 0}

and the following conditions are fulfilled:

(1) For 1 ≤ i1 < i2 < · · · < i` ≤ b the 1-forms dρi1 , . . . , dρi` are R-linearly

independent on the set
⋂̀
j=1

{ρij (z) ≤ 0}.

(2) For 1 ≤ i1 < i2 < · · · < i` ≤ b and every z ∈
⋂̀
j=1

{ρij (z) ≤ 0}, if we

set I = (i1, . . . , i`), there exists a linear subspace T Iz of X of complex
dimension at least n − q + 1 such that for i ∈ I the Levi forms Lρi
restricted on T Iz are positive definite.

Theorem 3.3. Let Ω ⊂⊂ X be a C3 q-convex intersection (q ≥ 1) in an n-
dimensional complex manifold X and E be a holomorphic Hermitian vector
bundle of rank N over X. Then for any form f in Lpr,s(Ω, E) ∩ Ker(∂̄), 1 ≤
p ≤ ∞, q ≤ s ≤ n− 1, there exist bounded linear operators T̃s from Lpr,s(Ω, E)

into Lpr,s−1(Ω, E) and compact linear operators K̃s from Lpr,s(Ω, E) into itself
such that

(4) f = ∂̄T̃sf + K̃sf in Ω.

Furthermore, for all s with q ≤ s ≤ n−1, the Lp-∂̄-cohomology group Hr,s
Lp (Ω, E)

is finite dimensional and the space ∂̄
(
Lpr,s−1(Ω, E)

)
is closed subspace of

Lpr,s(Ω, E).



Lp-ESTIMATES FOR ∂̄ WITH EXACT SUPPORT 37

Proof. Let Ω ⊂⊂ U ⊂⊂ Cn be a C3 q-convex intersection with the defining
functions {ρi}bi=1 and U as in Definition 3.2. Set

ΩI = {z ∈ U | ρi(z) < 0, i ∈ I} and SI = {z ∈ U | ρi(z) = 0, i ∈ I}.

For each ξ ∈ SI there exists a smoothly bounded strictly pseudoconvex do-
main D∗ defined by D∗ = {z ∈ U ; ρ∗(z) < 0} such that ∂D∗ intersects real
transversely {z ∈ U ; ρi1(z) < 0}, . . . , {z ∈ U ; ρi`(z) < 0} and ξ ∈ D∗.

Denote by I∗ the multi-index (i1 . . . , i`, ∗), where I = (i1 . . . , i`), 1 ≤ i1 <
· · · < i` < b, and define

ΩI∗ = {z ∈ U ; ρj(z) < 0, j ∈ I∗}.

The domain ΩI∗ is still q-convex and is called a local q-convex intersection.
Since ΩI is q-convex intersection, for every z ∈ ΩI there is then an (n− q+ 1)-
linear vector subspace T Iz of Cn such that the Levi forms Lρi are positive
definite on T Iz for all i ∈ I. Therefore, by means of generalized Berndtsson-
Andersson formula with multiple weights, Lan Ma and Vassiliadou proved in
[20] that if f ∈ C1

r,s(ΩI∗) with ∂̄f ∈ C1
r,s+1(ΩI∗), 0 ≤ r ≤ n, q ≤ s ≤ n − 1,

there exist local kernels Kε
s (ζ, z) (ε > 0) of bidegree (r, s) in z and of bidegree

(n− r, n− s− 1) in ζ such that the map

f 7−→
∫
ζ∈ΩI∗

f(ζ) ∧Kε
s−1(ζ, z)

defines a bounded linear operator Ts : C1
r,s(ΩI∗)→ C1

r,s−1(ΩI∗), the map

f 7−→
∫
ζ∈∂ΩI∗

f(ζ) ∧Kε
s (ζ, z)

defines a compact linear operator Ks : C1
r,s(ΩI∗)→ C1

r,s(ΩI∗) and the homotopy
formula

f = ∂̄Tsf + Ts+1∂̄f +Ksf

holds on ΩI∗ for every f in C1
r,s(ΩI∗) with ∂̄f in C1

r,s+1(ΩI∗).
Now we extend these operators to E-valued (r, s)-forms defined on q-convex

intersections in complex manifolds. Let Ω ⊂⊂ X be a C3 q-convex intersection
(q ≥ 1) in an n-dimensional complex manifold X and E be a holomorphic
Hermitian vector bundle over X. Cover Ω by a finite number of open sets
V1, V2, . . . , Vm such that Ω ⊆ V1 ∪ · · · ∪ Vm and for every 1 ≤ j ≤ m the
intersection Vj ∩ Ω is a local q-convex intersection, moreover, we may assume
that E is trivial over some coordinates neighborhoods zj = (z1

j , z
2
j , . . . , z

n
j ) of

each Vj ∩ Ω. Then, for every f ∈ C1
r,s(Ω ∩ Vj , E), q ≤ s ≤ n− 1, with ∂̄f = 0,

there exist bounded linear operators

T js : C1
r,s(Ω ∩ Vj , E) −→ C1

r,s−1(Ω ∩ Vj , E)

and compact operators

Kj
s : C1

r,s(Ω ∩ Vj)→ C1
r,s(Ω ∩ Vj)
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such that the homotopy formulas

f = ∂̄T js f +Kj
sf

hold on Ω ∩ Vj for all f ∈ C1
r,s(Ω ∩ Vj) ∩Ker(∂̄).

Choose a C∞ partition of unity {χj} subordinate to the covering {Vj} and
define

T̃sf =

m∑
j=1

χjT
j
s f and K̃sf =

m∑
j=1

χjK
j
sf

for f ∈ C1
r,s(Ω, E) ∩Ker(∂̄), q ≤ s ≤ n− 1.

We then have

(5) f = ∂̄T̃sf + K̃sf, f ∈ C1
r,s(Ω, E) ∩Ker(∂̄), q ≤ s ≤ n− 1.

By using the Lp-estimates proved in [20] and the mollification method of
Friedrichs (see e.g. [11]), the formula (5) extends to forms in Lpr,s(Ω, E)∩Ker(∂̄)

for all 1 ≤ p ≤ ∞ and q ≤ s ≤ n− 1. This proves (4). As the operators K̃s are

compact operators from Lpr,s(Ω, E) into itself, the operator Id− K̃s is a Fred-

holm operator maps Lpr,s(Ω, E)∩Ker(∂̄) into itself whose range is contained in

∂̄(Lpr,s−1(Ω, E)) by the formula (4) and hence the dimension of the cohomology

group Hr,s
Lp (Ω, E) is smaller than the codimension of the range of Id−K̃s which

is finite. Therefore, the open mapping theorem implies that ∂̄(Lpr,s−1(Ω, E)) is

a closed subspace of Lpr,s(Ω, E). The proof is complete. �

By using a partition of unity and the Lp-estimates obtained in [2, Theorem
0.1], we have the following Lp-existence theorem.

Theorem 3.4. Let Ω ⊂⊂ X be a C3 q-convex intersection (q ≥ 1) in a Kähler
manifold X of complex dimension n and E be a holomorphic Hermitian vector
bundle of rank N over X. Then

(i) If E is Nakano semi-positive of type m on Ω, then for any ∂̄-closed
form f in L1

n,s(Ω, E) there exists a form g in L1
n,s−1(Ω, E) such that

∂̄g = f for all s so that max{q,m} ≤ s ≤ n − 1. Moreover, if f is
in Lpn,s(Ω, E), 1 ≤ p ≤ ∞, then g is in Lpn,s−1(Ω, E) and there is a

constant Cs > 0 (independent of f and p) such that

‖g‖Lpn,s−1(Ω,E) ≤ Cs‖f‖Lpn,s(Ω,E), 1 ≤ p ≤ ∞.

(ii) If E is Nakano semi-negative of type m on Ω, the assertion (i) holds
for E-valued (0, s)-forms with Lp-coefficients, for all q ≤ s ≤ n −m,
1 ≤ q,m ≤ n− 1 and n ≥ 2.

Since the q-convexity is stable with respect to small C3 perturbations, we
may assume that the defining functions ρi of Ω are Morse functions (i.e., all
critical points of ρi are non-degenerate and if ζ1 and ζ2 are two different critical
points of ρi, then ρi(ζ1) = ρi(ζ2)). Then we can approximate Ω from inside
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by a sequence of C3 q-convex intersections {Ωk} such that Ωk ⊂⊂ Ωk+1 ⊂⊂ Ω
and Ω =

⋃
k Ωk. This approach is known as Grauert’s bumping method where

each Ωk+1 is obtained from Ωk by an appropriate small bump (see e.g. [16] for
the q-convex (q-concave) domains or [22] for q-convex intersections). Then, as
in [19, Theorem 2.10], the next theorem follows immediately from Theorems
3.3 and 3.4.

Theorem 3.5. Let Ω, X and E be given as in Theorem 3.4. Then we have
the following assertions.

(i) If E is Nakano semi-positive of type m on Ω, then for all s so that
max{q,m} ≤ s ≤ n− 1, we have

Hn,s
Lp (Ω, E) ∼ Hn,s

Lp,loc(Ω, E).

(ii) If E is Nakano semi-negative of type m on Ω, then for all s so that
q ≤ s ≤ n−m, 1 ≤ q,m ≤ n− 1, n ≥ 2, we have

H0,s
Lp (Ω, E) ∼ H0,s

Lp,loc(Ω, E).

We note that since every smooth domain in the complex plane is strictly
pseudoconvex, the assertions (i) in Theorems 3.4 and 3.5 are still valid when
n = 1 and E is the trivial line bundle with the flat metric with q = s = m = 1.

Following [19], we recall that for any two real numbers p and p′ so that p > 1
and 1

p + 1
p′ = 1 and any r ∈ N with 0 ≤ r ≤ n, the complexes (Lpr,•(Ω, E), ∂̄)

and (Lp
′

n−r,•(Ω, E
∗), ∂̄c) are dual complexes. Moreover, we recall the following

abstract result on duality.

Proposition 3.6. Let (E•, d) and (E′•, d
′) be two dual complexes of reflexive

Banach spaces with densely defined unbounded operators. Assume that Hs(E
′
•)

is Hausdorff and Hs+1(E′•) = 0, then Hs+1(E•) = 0.

Let p, p′ > 1 be real numbers with 1
p + 1

p′ = 1. It follows from Theorem

3.3 and Theorem 3.4(i) that the cohomology group Hn,s

Lp′
(Ω, E) is Hausdorff

for all s such that q ≤ s ≤ n − 1 and Hn,s

Lp′
(Ω, E) = 0 for all s such that

max{q,m} ≤ s ≤ n − 1. Moreover, by Theorem 3.3 and Theorem 3.4(ii), we

get that H0,s

Lp′
(Ω, E) is Hausdorff for all q ≤ s ≤ n− 1 and H0,s

Lp′
(Ω, E) = 0 for

all q ≤ s ≤ n−m, where 1 ≤ q,m ≤ n− 1 and n ≥ 2.

End proof of Theorem 1.1. On applying Proposition 3.6 to the complex (E•, d)

with, for fixed r so that 0 ≤ r ≤ n, Es = Lp
′

r,s(Ω, E
∗) if 0 ≤ s ≤ n and Es = {0}

if s < 0 or s > n, and d = ∂̄c̃, we deduce that the cohomological hypotheses
of Theorem 2.20 in [19] are satisfied in the current situations. This implies
Lp-solvability for the ∂̄-equation with exact support on a q-convex intersection
in a complex manifold, and this completes the proof of Theorem 1.1. �
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4. ∂̄-closed extensions of forms in Lp

As an application of Theorem 1.1, we obtain a Hartogs-like extension theo-
rem for ∂̄-closed forms.

Theorem 4.1. Let Ω ⊂⊂ X be a C3 q-convex intersection (q ≥ 1) in a Kähler
manifold X of complex dimension n ≥ 3 such that X \ Ω is connected. Let E
be a holomorphic Hermitian vector bundle of rank N over X.

(1) If E is Nakano semi-positive of type m on Ω, then for every ∂̄-closed

form f in W 1,p′

0,s (X\Ω, E∗), 1 ≤ s ≤ min{n−q, n−m}, 2 ≤ q,m ≤ n−1,

there exists a form F in Lp
′

0,s(X,E
∗) such that F |X\Ω = f and ∂̄F = 0

in X in the distribution sense.
For s = n− 1, if we assume furthermore that the restriction of f to

∂Ω satisfies the moment condition∫
∂Ω

f ∧ φ = 0, ∀ φ ∈ Lpn,0(Ω, E) ∩Ker(∂̄),

then the same statement holds.
(2) If E is Nakano semi-negative of type m on Ω, then statement (1) holds

for all ∂̄-closed form f in W 1,p′

n,s (X \ Ω, E∗) for m ≤ s ≤ n − q and
2 ≤ q,m ≤ n− 1.

For s = n− 1, the same statement holds true if we assume further-
more that f satisfies the moment condition∫

∂Ω

f ∧ φ = 0, ∀ φ ∈ Lpn,0(Ω, E) ∩Ker(∂̄).

Proof. We consider the assertion in (1), i.e., the case when E is Nakano semi-
positive of type m on Ω, as the defining functions ρi of Ω are of class C3, there

is a bounded extension operator of W k,p′

0,s (X \ Ω, E∗) into W k,p′

0,s (X,E∗) for all

k ≥ 0 and 1 ≤ p′ < ∞ (see e.g. [8, Theorem 9.7]). Let f̃ ∈ W 1,p′

0,s (X,E∗) be

the extension of f such that f̃ |X\Ω = f . Then ∂̄f̃ is in Lp
′

0,s+1(X,E∗) and is

compactly supported in Ω. In view of Theorem 1.1, there exists a form g in

Lp
′

0,s(X,E
∗) with compact support in Ω such that ∂̄g = ∂̄f̃ in the distribution

sense in X. Set F = f̃ − g, we have ∂̄F = 0 in X, F |X\Ω = f and F is

compactly supported in Ω. Thus the form F ∈ Lp
′

0,s(X,E
∗) is the desired

∂̄-closed extension of f to X. The assertion in (2) follows on using similar
arguments. This completes the proof. �

Corollary 4.2. Let Ω1 and Ω2 be two strictly q-convex and q∗-convex inter-
sections with smooth C∞ boundaries in an n ≥ 3-dimensional Kähler mani-
fold X, respectively, such that Ω2 ⊂ Ω1 ⊂⊂ X. Assume that Hr,s

Lp (X) = 0.

Then for any ∂̄-closed form f in W 1,p
r,s (Ω1 \ Ω2) there exists a form u in



Lp-ESTIMATES FOR ∂̄ WITH EXACT SUPPORT 41

W 1,p
r,s−1(Ω1 \ Ω2) ∩W

1
2 ,p
r,s (Ω1 \ Ω2) such that ∂̄u = f in Ω1 \ Ω2, where r ≥ 0,

q∗ ≤ s ≤ n− q − 1.
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