J. Korean Math. Soc. **55** (2018), No. 1, pp. 29–42 https://doi.org/10.4134/JKMS.j160695 pISSN: 0304-9914 / eISSN: 2234-3008

L^p -ESTIMATES FOR THE $\bar{\partial}$ -EQUATION WITH EXACT SUPPORT ON q-CONVEX INTERSECTIONS

Shaban Khidr

ABSTRACT. We construct bounded linear integral operators that giving solutions to the $\bar{\partial}$ -equation in L^p -spaces and with compact supports on a *q*-convex intersection ($q \geq 1$) with C^3 boundary in Kähler manifolds, and we apply it to obtain a Hartogs-like extension theorems for $\bar{\partial}$ -closed forms for some bidegree.

1. Introduction

The problem of solving $\bar{\partial}$ with exact support was initiated for differential forms by Andreotti and Hill in [5] and [6]. Later, it has been widely investigated (cf. [11], [12], [13] and [18]). More precisely, let $\Omega \subset X$ be a relatively compact domain in a complex manifold X of complex dimension n and E be a holomorphic Hermitian vector bundle over X. If Ω is a bounded pseudoconvex domain in \mathbb{C}^n , Chen and Shaw proved in [11, Chapter 9] that for any ∂ -closed (r,s)-form f with L^2 (or \mathcal{C}^{∞}) coefficients in \mathbb{C}^n and compactly supported in $\overline{\Omega}$, there exists a form u in $L^2_{r,s-1}(\mathbb{C}^n)$ (or in $\mathcal{C}^{\infty}_{r,s-1}(\mathbb{C}^n)$) such that u is compactly supported in $\overline{\Omega}$ and $\overline{\partial} u = f$ in \mathbb{C}^n , for $0 \leq r \leq n$ and $1 \leq s \leq n-1$. When Ω is a bounded domain with Lipschitz boundary and satisfies a convexity condition called $\log \delta$ -pseudoconvex in an *n*-dimensional Kähler manifold X, Brinkschulte proved in [9] that if f is a $\bar{\partial}$ -closed E-valued (r, s)-form with \mathcal{C}^{∞} -coefficients in X and with compact support in $\overline{\Omega}$, then there exists a (r, s - 1)-form u with \mathcal{C}^{∞} -coefficients in X and with compact support in $\overline{\Omega}$ such that $\overline{\partial} u = f$ in X, for $0 \le r \le n$ and $1 \le s \le n-1$. Moreover, she proved that the range of the $\bar{\partial}$ -operator acting on the subspace of (r, n-1)-forms of class \mathcal{C}^{∞} and compactly supported in $\overline{\Omega}$ is closed.

Analogous results to those of [9] have been obtained by Sambou in [23] for \mathbb{C} -valued (r, s)-forms with compact support in $\overline{\Omega}$ when Ω is a completely strictly q-convex domain $(0 \le q \le n - 1)$ with smooth boundary in an *n*-dimensional complex manifold X for all $1 \le s \le q$. This domain is defined in the sense

©2018 Korean Mathematical Society

Received October 28, 2016; Accepted August 4, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 32F10, 32W05.

Key words and phrases. L^p -estimates, solution with exact support, q-convex intersection, Serre duality.

²⁹

of Henkin by $\Omega = \{z \in U \mid \rho(z) < 0\}$ where ρ is a smooth function defined on an open neighborhood U of $\overline{\Omega}$ whose Levi form has at least q + 1 positive eigenvalues everywhere (see e.g. [16]). In addition, he showed that the range of the $\overline{\partial}$ -operator acting on the subspace of \mathcal{C}^{∞} (r, s - 1)-forms with compact support in $\overline{\Omega}$ is closed for $1 \leq s \leq q+1$. Further, he proved that the $\overline{\partial}$ -equation is solvable on such domain for extensible currents of bidegree (n, n - s) for all s with $1 \leq n - q \leq s \leq n$. Furthermore, the case for strictly q-concave domains is dealt by the author in [24].

It worth also to mention that solving the $\bar{\partial}$ -equation with prescribed support enables one to obtain $\bar{\partial}_b$ -closed extensions of forms from boundaries of bounded domains (see e.g. [9], [10], [11] and [14]).

Solving $\overline{\partial}$ with compact support in L^p -spaces (or the so called the weak L^p $\overline{\partial}$ -Cauchy problem) is formulated by giving a $\overline{\partial}$ -closed form f in $L^p_{r,s}(X, E)$ with compact support in $\overline{\Omega}$, $0 \leq r \leq n$, $1 \leq s \leq n$ and $p \geq 1$, the problem is then to find a form u in $L^p_{r,s-1}(X, E)$ such that

(1)
$$\begin{cases} \bar{\partial}u = f \text{ in the weak sense in } X, \\ \text{supp } u \subset \overline{\Omega}. \end{cases}$$

This problem was solved by Amar and Mongodi in [4] for \mathbb{C} -valued forms on Stein open domains of the form $\mathbb{D}^n \setminus \mathcal{Z}$ in \mathbb{C}^n , where \mathbb{D}^n is a polydisc and \mathcal{Z} is the zero locus of some holomorphic function, and by Amar in [3] for weakly *p*-regular domains in Stein manifolds. In [19], Laurent-Thiébaut gave some general cohomological and geometric conditions on X and Ω under which (1) can be solved. In particular, she solved (1) for \mathbb{C} -valued (r, s)-forms on completely *q*-convex domains in complex manifolds for all $1 \leq s \leq n - q$ (See Corollary 2.23 in [19]).

The plane of the paper is as follows. We first extend some complex analysis results of Amar [3] to E-valued currents on relatively compact domains in Kähler manifolds. Next, via a partition of unity, we globalize the local compact integral homotopy operators constructed in [20] for the $\bar{\partial}$ -equation to get global ones for E-valued forms on a \mathcal{C}^3 q-convex intersection Ω in an ndimensional Kähler manifold X. We moreover show that the L^p - $\bar{\partial}$ -cohomology group $H_{L^p}^{r,s}(\Omega, E)$ is finite dimensional and the space $\bar{\partial}(L_{r,s-1}^p(\Omega, E))$ is closed subspace of $L^p_{rs}(\Omega, E)$ for all $q \leq s \leq n-1$. By using these integral homotopy formulas, we then solve the $\bar{\partial}$ -equation with global L^p -estimates for $\bar{\partial}$ -closed Evalued forms of type (n, s) with $1 \le s \le \min\{n-q, n-m\}$ and $1 \le q, m \le n-1$ (respectively of type (0, s) with $m \leq s \leq n - q$ and $1 \leq q, m \leq n - 1$) if E is Nakano semi-positive (respectively Nakano semi-negative) of type m on $\overline{\Omega}$ (see Theorem 3.4 below). This result generalizes some results of [17] to Evalued forms for some bidegree. Combining these results together with some arguments inspired from Laurent-Thiébaut [19], we have the following main theorem.

Theorem 1.1. Let $\Omega \subset X$ be a C^3 q-convex intersection $(1 \leq q \leq n-1)$ in an n-dimensional Kähler manifold X with $n \geq 2$ and E be a holomorphic Hermitian vector bundle over X such that $X \setminus \Omega$ is connected. Then the following assertions hold true.

- (i) If E is Nakano semi-positive of type m (1 ≤ m ≤ n − 1) on Ω, then for any ∂-closed form f in L^{p'}_{0,s}(X, E*) such that f is supported in Ω, there exists a form u in L^{p'}_{0,s−1}(X, E*) supported in Ω such that ∂u = f in X, for 1 ≤ s ≤ min{n − q, n − m}.
- (ii) If E is Nakano semi-negative of type m on Ω, then for any ∂-closed form f in L^{p'}_{n,s}(X, E^{*}) with compact in Ω, there exists a form u in L^{p'}_{n,s-1}(X, E^{*}) with compact support in Ω such that ∂u = f in X, for m ≤ s ≤ n q.

This result generalizes Corollary 2.23 of Laurent-Thiébaut [19] (which was obtained for \mathbb{C} -valued (r, s)-forms, $0 \leq r \leq n, 1 \leq s \leq n - q$, on completely q-convex domains $(q \geq 1)$ in complex manifolds) to more general q-convex domains and to E^* -valued forms for some bidegree.

Remark 1.2. We note that $\max\{q, m\} = 1$ means that m = q = 1. The case m = 1 implies that E is Nakano-positive on $\overline{\Omega}$, then there is a Kähler metric on $\overline{\Omega}$, so the Kählerity assumption is automatically satisfied (see e.g. [1]) and q = 1 means that Ω is a strictly pseudoconvex domain with piecewise \mathcal{C}^3 -boundary (see e.g. [21]). Therefore the assertion (i) in Theorem 1.1 for this case still valid if X is replaced by any complex manifold of complex dimension $n \geq 2$.

Actually, the Kählerity property of X and the positivity assumptions on E play a crucial role in the proof of our results, these conditions ensure the L^2 -existence theorem for the $\bar{\partial}$ -equation in our setting (see [2]).

In addition, by using these results, we prove a Hartogs-like theorem for $\bar{\partial}$ closed forms in L^p -setting with $p \ge 1$ (see Theorem 4.1 below). This result generalizes the result of Theorem 5 in [10] which was obtained for \mathbb{C} -valued forms with coefficients in the usual L^2 -Sobolev spaces W^k , $k \ge 0$, on bounded pseudoconvex domains with Lipschitz boundaries in Stein manifolds. As a results, we finally solve the $\bar{\partial}$ -equation for forms with $W^{1,p}$ -coefficients on an annulus type domain between two strictly q-convex domains with smooth boundaries in a Kähler manifold. This result was also proved in [10] for forms with W^k coefficients on an annulus domain between two pseudoconvex domains in a Stein manifold.

2. Preliminaries

In this section, we fix notations, definitions, and auxiliary results that will be used throughout the paper. Let X be a complex manifold of complex dimension n and E be a holomorphic Hermitian vector bundle of rank N over X. Let $\{U_j\}; j \in I$, be an open covering of X consisting of coordinates neighborhoods

 U_j with holomorphic coordinates $z_j = (z_j^1, z_j^2, \dots, z_j^n)$ over which E is trivial, namely, $\pi^{-1}(U_j) = U_j \times \mathbb{C}^N$. The N-dimensional complex vector space $E_z = \pi^{-1}(z)$; $z \in X$, is called the fiber of E over z. Let h be a Hermitian metric along the fibers of E that defined by a system of Hermitian matrix-valued positive C^∞ functions $\{h_j\}$; $h_j = (h_{j\mu\bar{\eta}})$. Denote by $(h_j^{\mu\bar{\eta}})$ the inverse matrix of $(h_{j\mu\bar{\eta}})$. Let $\theta = \{\theta_j\}$; $\theta_j = (\theta_{j\mu}^{\nu})$, $\theta_{j\mu}^{\nu} = \sum_{\alpha=1}^n \sum_{\eta=1}^N h_j^{\nu\bar{\eta}} \frac{\partial h_{j\mu\bar{\eta}}}{\partial z_j^\alpha} dz_j^\alpha$ and $\Theta = \{\Theta_j\}$; $\Theta_j = (\Theta_{j\mu}^{\nu})$, $\Theta_{j\mu}^{\nu} = \sqrt{-1}\bar{\partial}\partial\log h_j = \sqrt{-1}\sum_{\alpha,\beta=1}^n \Theta_{j\mu\alpha\bar{\beta}}^{\nu} dz_j^\alpha \wedge d\bar{z}_j^\beta$, where $\Theta_{j\mu\alpha\bar{\beta}}^{\nu} = -\frac{\partial}{\partial\bar{z}_j^\beta} (h_j^{\nu\bar{\eta}} \frac{\partial h_{j\mu\bar{\eta}}}{\partial z_j^\alpha})$, $1 \leq \mu, \nu \leq N$, be the connection and curvature forms associated to the metric h. The curvature matrix is given by $H_{j\bar{\eta}\bar{\beta},\nu\alpha} = \sum_{\mu=1}^N h_{j\mu\bar{\eta}}\Theta_{j\nu\alpha\bar{\beta}}^\mu$.

Definition 2.1 (see e.g. [2]). Let E be a holomorphic Hermitian vector bundle of rank N over a complex manifold X of complex dimension n.

(a) E is said to be Nakano *m*-positive (respectively *m*-negative), at $x \in U_j$, if there exists an (n-m+1)-dimensional subspace S_x of the holomorphic tangent $T_x(X)$ such that the Hermitian form

(2)
$$\sum H_{j\bar{\eta}\bar{\beta},\nu\alpha}(x)\zeta_{\alpha}^{\nu}\bar{\zeta}_{\beta}^{\eta}$$

is positive (respectively negative) definite for any $\zeta = (\zeta_{\alpha}^{\nu}) \in S_x \otimes E_x; \zeta \neq 0.$

- (b) E is said to be Nakano semi-positive (respectively semi-negative), at $x \in U_j$, if the Hermitian form (2) is positive (respectively negative) semi-definite for any $\zeta = (\zeta_{\alpha}^{\nu}) \in T_x(X) \otimes E_x$.
- (c) E is said to be Nakano semi-positive (respectively semi-negative) of type m if E is both Nakano semi-positive and Nakano m-positive (respectively Nakano semi-negative and Nakano m-negative) at x.

For all $0 \leq r, s \leq n$, we denote by $\Lambda^{r,s}(X, E)$ the space of *E*-valued forms of bidegree (r, s) and of class C^{∞} on *X* with the topology of uniform convergence of forms and all their derivatives on compact subsets of *X* and by $\mathcal{D}^{r,s}(X, E)$ the subspace of $\Lambda^{r,s}(X, E)$ consisting of forms with compact supports in *X*. The associated cohomologies groups are denoted by $H^{r,s}(X, E)$ and $H^{r,s}_c(X, E)$ respectively. Let *K* be a compact subset of *X* and $\mathcal{D}_K^{r,s}(X, E)$ the closed subspace of $\Lambda^{r,s}(X, E)$ of forms with supports in *K* endowed with the induced topology. Let $\{K_i\}_{i\in\mathbb{N}}$ be an increasing sequence of compact subsets of *X* such that $K_i \subset K_{i+1}^{\circ}$ and $\bigcup_{i\in\mathbb{N}} K_i = X$. Then $\mathcal{D}^{r,s}(X, E) = \bigcup_{i=1}^{\infty} \mathcal{D}_{K_i}^{r,s}(X, E)$. We put on $\mathcal{D}^{r,s}(X, E)$ the strict inductive limit topology defined by the spaces $\mathcal{D}_{K_i}^{r,s}(X, E)$. If $\varphi \in \Lambda^{r,s}(X, E)$, then $\bar{\partial}\varphi = \{\bar{\partial}\varphi_j\}$, where $\bar{\partial}\varphi_j = (\bar{\partial}\varphi_j^1, \bar{\partial}\varphi_j^2, \dots, \bar{\partial}\varphi_j^N)$. Let ds^2 be a Kähler metric on *X* defined by

$$ds^2 = \sum_{\alpha,\beta=1}^n g_{j\alpha\bar{\beta}} \, dz_j^\alpha d\bar{z}_j^\beta,$$

where $g_{j\alpha\bar{\beta}}$ is a C^{∞} -section of $T^{\star}(X) \otimes \bar{T}^{\star}(X)$ on U_j . For $\varphi, \psi \in \Lambda^{r,s}(M, E)$, we define a local inner product, at $z \in U_j$, by

$$\sum_{\nu,\mu=1}^{N} h_{j\nu\bar{\mu}}\varphi_{j}^{\nu}(z) \wedge \star \overline{\psi_{j}^{\mu}(z)} = a(\varphi(z),\psi(z))dv,$$

where the Hodge star operator \star and the volume element dv are defined by ds^2 and $a(\varphi, \psi)$ is a function on X independent of j. For $\varphi, \psi \in \mathcal{D}^{r,s}(X, E)$, a global inner product is then defined by $(\varphi, \psi) = \int_X a(\varphi, \psi) dv$. Let $L^2_{r,s}(X, E)$ be the Hilbert space obtained by completing the space $\mathcal{D}^{r,s}(X, E)$ under the norm $\|\varphi\|^2 = (\varphi, \varphi)$.

We now extend the complex analysis results obtained in [3] to domains in complex manifolds. Let $\Omega \subset \subset X$ be a bounded domain with smooth boundary in a Kähler manifold X of complex dimension n, E be a holomorphic Hermitian vector bundle of rank N over X, and E^* be the dual vector bundle of E. The space of E^* -valued currents of bidegree (n - r, n - s) (or bidimension (r, s)) denoted by $\mathcal{D}_{cur}^{n-r,n-s}(\Omega, E^*)$ is the topological dual to the space $\mathcal{D}^{r,s}(\Omega, E)$. The $\bar{\partial}$ -operator is defined from $\mathcal{D}_{cur}^{n-r,n-s}(\Omega, E^*)$ into $\mathcal{D}_{cur}^{n-r,n-s+1}(\Omega, E^*)$ as the transpose of the original $\bar{\partial}$ -operator from $\mathcal{D}^{r,s}(\Omega, E)$ into $\mathcal{D}^{r,s+1}(\Omega, E)$. The topological dual to the space $\Lambda^{r,s}(\Omega, E)$ denoted by $\Lambda_{c,cur}^{n-r,n-s}(\Omega, E^*)$ is the space of E^* -valued currents of of bidegree (n - r, n - s) with compact supports in Ω . The restriction of the $\bar{\partial}$ -operator to $\Lambda_{c,cur}^{n-r,n-s}(\Omega, E^*)$ gives unbounded operator $\bar{\partial} : \Lambda_{c,cur}^{n-r,n-s}(\Omega, E^*) \to \Lambda_{c,cur}^{n-r,n-s+1}(\Omega, E^*)$. For further details on duality for complexes of topological vector spaces, we refer to [7] and the references therein.

Let $A_{r,s}(\Omega, E)$ be a topological space of *E*-valued (r, s)-forms on Ω and $A'_{r,s}(\Omega, E)$ be its dual. Assume that the injections

$$\mathcal{D}^{r,s}(\Omega, E) \hookrightarrow A_{r,s}(\Omega, E) \hookrightarrow \mathcal{D}^{n-r,n-s}_{\mathrm{cur}}(\Omega, E)$$

being continuous. Then $B_{n-r,n-s}(\Omega, E^{\star}) = A'_{r,s}(\Omega, E)$ still a space of currents and asking that the duality pairing $\langle \phi, \psi \rangle = \int_{\Omega} \phi \wedge \psi$ be $\bar{\partial}$ compatible with currents, i.e., $\forall \phi \in \mathcal{D}^{r,s}_{cur}(\Omega, E)$ and $\psi \in \mathcal{D}^{n-r,n-s-1}(\Omega, E^{\star})$,

$$\langle \bar{\partial}\phi,\psi\rangle = (-1)^{r+s+1} \langle \phi,\bar{\partial}\psi\rangle.$$

For $0 \leq r \leq n, 1 \leq s \leq n$, we recall that the equation $\bar{\partial}g = f$ is solvable in $A_{r,s}(\Omega, E)$ if for any $\bar{\partial}$ -closed form f in $A_{r,s}(\Omega, E)$ there exists a form gin $A_{r,s-1}(\Omega, E)$ such that $\bar{\partial}g = f$ in Ω . Suppose now that the $\bar{\partial}$ -equation is solvable in $A_{r,s}(\Omega, E)$ and $A_{r,s+1}(\Omega, E)$ for all $1 \leq s \leq n-1$. Let u be a $\bar{\partial}$ -closed form in $B_{n-r,n-s}(\Omega, E^*)$ and consider the form

(3)
$$\mathcal{L}_{u}(\eta) = \langle g, u \rangle \quad \forall \ \eta \in A_{r,s+1}(\Omega, E), \ \bar{\partial}\eta = 0,$$

with $\bar{\partial}g = \eta$, which exists by hypothesis. Denote by $\mathcal{H}_r(\Omega, E)$, the space of *E*-valued $\bar{\partial}$ -closed (r, 0)-forms on Ω . Then we have:

Lemma 2.2. The form \mathcal{L}_u defined by (3), with $\langle g, u \rangle = 0$ for s = 0 and $g \in \mathcal{H}_r(\Omega, E)$, is well defined and linear.

Proof. In order to prove that the form \mathcal{L}_u is well defined, we have to show that $\langle g, u \rangle = \langle h, u \rangle$ if $g, h \in A_{r,s}(\Omega, E)$ with $\bar{\partial}g = \bar{\partial}h$.

We consider first the case when $1 \leq s \leq n$. Let $g, h \in A_{r,s}(\Omega, E)$ be such that $\bar{\partial}g = \bar{\partial}h = \eta$, then the difference g - h is a $\bar{\partial}$ -closed form in $A_{r,s}(\Omega, E)$. By hypothesis, there exists $\phi \in A_{r,s-1}(\Omega, E)$ such that $\bar{\partial}\phi = g - h$. Hence,

$$\langle g - h, u \rangle = \langle \bar{\partial}\phi, u \rangle = (-1)^{r+s} \langle \phi, \bar{\partial}u \rangle = 0.$$

Thus \mathcal{L}_u is also well defined for all $s \geq 1$.

For s = 0, we have $\partial u = 0$ (because u is an (n - r, n)-form). Again, let $g, h \in A_{r,0}(\Omega, E)$ with $\overline{\partial}g = \overline{\partial}h$, hence g - h is a $\overline{\partial}$ -closed (r, 0)-form, i.e., $g - h \in \mathcal{H}_r(\Omega, E)$. Since, by hypothesis, $u \perp \mathcal{H}_r(\Omega, E)$, we have $\langle g - h, u \rangle = 0$. Then \mathcal{L}_u is also well defined in this case.

Next, we show that the form \mathcal{L}_u is linear, let η_1 and η_2 be in $A_{r,s+1}(\Omega, E)$ such that $\bar{\partial}\eta_1 = \bar{\partial}\eta_2 = 0$ and put $\eta = \eta_1 + \eta_2$, then $\bar{\partial}\eta = 0$ and so there are g, g_1 and g_2 in $A_{r,s}(\Omega, E)$ such that $\bar{\partial}g = \eta$, $\bar{\partial}g_1 = \eta_1$ and $\bar{\partial}g_2 = \eta_2$. Thus $\bar{\partial}(g - g_1 - g_2) = 0$ and hence there is a form h in $A_{r,s-1}(\Omega, E)$ such that $g = g_1 + g_2 + \bar{\partial}h$, therefore

 $\mathcal{L}_{u}(\eta) = \langle g, u \rangle = \langle g_{1} + g_{2} + \bar{\partial}h, u \rangle = \langle g_{1}, u \rangle + \langle g_{2}, u \rangle + \langle \bar{\partial}h, u \rangle = \mathcal{L}_{u}(\eta_{1}) + \mathcal{L}_{u}(\eta_{2}),$ where $\langle \bar{\partial}h, u \rangle = (-1)^{r+s} \langle h, \bar{\partial}u \rangle = 0$. Similarly for $\lambda \eta$; $\lambda \in \mathbb{C}$. The proof is complete.

Following [3], the equation $\partial u = \eta$ is continuously solvable in $A_{r,s+1}(\Omega, E)$ if it is solvable in $A_{r,s}(\Omega, E)$ and $A_{r,s+1}(\Omega, E)$ and, moreover, if the form $\mathcal{L}_u(\eta)$ is continuously linear on the subspace of all $\bar{\partial}$ -closed forms η in $A_{r,s+1}(\Omega, E)$.

Theorem 2.3. If the ∂ -equation is continuously solvable in $A_{r,s+1}(\Omega, E)$, then it is solvable in $B_{n-r,n-s}(\Omega, E^*)$, that is, for any $f \in B_{n-r,n-s}(\Omega, E^*)$ with $\overline{\partial}f = 0$ if $1 \leq s \leq n-1$ and $\langle f, g \rangle = 0$ for all $g \in \mathcal{H}_r(\Omega, E)$ if s = 0, there exists $\omega \in B_{n-r,n-s-1}(\Omega, E^*)$ such that $\overline{\partial}\omega = f$.

Proof. Let $f \in B_{n-r,n-s}(\Omega, E^*)$ with $\bar{\partial}f = 0$ for $1 \leq s \leq n-1$ and $\langle f, g \rangle = 0$ for s = 0 and $g \in \mathcal{H}_r(\Omega, E)$. Consider the form \mathcal{L}_f on the subspace of all η in $A_{r,s+1}(\Omega, E)$ with $\bar{\partial}\eta = 0$, which exists by hypothesis on $A_{r,s+1}(\Omega, E)$ and is continuous by assumption.

By the Hahn-Banach extension theorem, it can be extended to the whole $A_{r,s+1}(\Omega, E)$. By duality, the extended form can be represented by a current $\omega \in B_{n-r,n-s-1}(\Omega, E^*)$. Then we have

$$\langle \eta, \omega \rangle = \langle \bar{\partial}g, \omega \rangle = \mathcal{L}_f(g) = \langle g, f \rangle.$$

But $\langle \bar{\partial}g, \omega \rangle = (-1)^{r+s+1} \langle g, \bar{\partial}\omega \rangle$ and hence $\langle g, f \rangle = (-1)^{r+s+1} \langle g, \bar{\partial}\omega \rangle$ for all $g \in \mathcal{D}^{r,s}(\Omega, E)$. This means that $\bar{\partial}\omega = f$. The proof is complete.

3. Solving $\bar{\partial}$ with exact support in L^p

Let $\Omega \subset X$ be a relatively compact domain with smooth boundary in a Kähler manifold X of complex dimension n and E be holomorphic Hermitian vector bundle of rank N over X. Let $\{U_{j\nu}\}$ be a finite elements of the covering $\{U_j\}$ such that $\cup_{\nu} U_{j\nu}$ cover $\overline{\Omega}$ and $\{\chi_{j\nu}\}$ be a partition of unity subordinate to $\{U_{j\nu}\}$. Then every E-valued (r, s)-form f can be identified with a system $\{f_{j\nu}\}$ of vectors $f_{j\nu} = (f_{j\nu}^1, f_{j\nu}^2, \ldots, f_{j\nu}^N)$ of differential forms $f_{j\nu}^\mu$ on $U_{j\nu} \cap \Omega$. For $1 \leq p \leq \infty$, we denote by $L_{r,s}^p(\Omega, E)$ the Banach space of E-valued forms f of bidegree (r, s) on Ω for which $\|f\|_{L_{r,s}^p(\Omega, E)} < \infty$. The norm $\|f\|_{L_{r,s}^p(\Omega, E)}$ is defined by means of a partition of unity in the following way: On each $U_{j\nu}$, we can choose an orthonormal basis $\omega^1, \ldots, \omega^N$ for the fibers E_z for every $z \in U_{j\nu}$. In such a basis, the $L^p(\Omega, E)$ -norm is defined by $\|f\|_{L_{r,s}^p(\Omega, E)} = \sum_{\mu=1}^N \sum_{j\nu} \|\chi_{j\nu} f_{j\nu}^\mu\|_{L^p(U_{j\nu} \cap \Omega)}$, where $\|\chi_{j\nu} f_{j\nu}^\mu\|_{L_{r,s}^\infty(U_{j\nu} \cap \Omega)} =$ ess $\sup |\chi_{j\nu} f^\mu|$. This norm depends on the choice of the coverings and their $U_{j\nu} \cap \Omega$

local coordinates, however, as $\overline{\Omega}$ is compact, different choices give equivalent norms. The associated $\overline{\partial}$ -cohomology group is denoted by $H_{L^p}^{r,s}(\Omega, E)$.

For $p \geq 1$, we denote by $L_{r,s}^{p,\text{loc}}(\Omega, E)$ the subspace of $\mathcal{D}_{cur}^{r,s}(\Omega, E)$ consisting of *E*-valued (r, s)-currents with coefficients in $L^{p,\text{loc}}(\Omega)$ and endowed with the topology of L^p -convergence on compact subsets of Ω . Taking the restriction to $L_{r,s}^{p,\text{loc}}(\Omega)$ of the $\bar{\partial}$ -operator in the sense of distributions we get an unbounded operator whose domain of definition is the set of forms f with $L^{p,\text{loc}}$ -coefficients such that $\bar{\partial}f$ has also $L^{p,\text{loc}}$ -coefficients, moreover, since $\bar{\partial} \circ \bar{\partial} = 0$, we get a complex of unbounded operators $(L_{r,s}^{p,\text{loc}}(\Omega, E), \bar{\partial})$. The associated $\bar{\partial}$ -cohomology group is denoted by $H_{L^{p,\text{loc}}}^{r,s}(\Omega, E)$. By $L_{r,s}^{p,c}(\Omega, E)$, we denote the subspace of $L_{r,s}^{p,\text{loc}}(\Omega, E)$ consisting of forms with compact supports in Ω . We also consider the subcomplex $(L_{r,s}^{p,c}(\Omega, E), \bar{\partial})$ of the previous one consisting of forms with compact supports. For all $k \geq 1$ and $1 \leq p \leq \infty$, the L^p -Sobolev spaces $W_{r,s}^{k,p}(\Omega, E)$ and their norms are defined in similar manner. Finally, for 1 and <math>p' such that $\frac{1}{p} + \frac{1}{p'} = 1$, $L_{n-r,n-s}^{p'}(\Omega, E^*)$ is the dual space of $L_{r,s}^p(\Omega, E)$ with respect to the duality pairing $\langle f, g \rangle = \int_{\Omega} f \wedge g$. Using a partition of unity, as in [3], we have the following duality theorem.

Theorem 3.1. For any p with $1 \leq p < \infty$ and p' such that $\frac{1}{p} + \frac{1}{p'} = 1$, $L_{n-r,n-s}^{p',c}(\Omega, E^*)$ is the dual space of $L_{r,s}^{p,\text{loc}}(\Omega, E)$ with respect to the duality pairing $\langle f, g \rangle = \int_{\Omega} f \wedge g$.

For $0 \leq r \leq n$ and $1 \leq s \leq n-1$, let $\bar{\partial}_c : L^p_{r,s}(\Omega, E) \to L^p_{r,s+1}(\Omega, E)$ be the minimal closed extension of $\bar{\partial}|_{\mathcal{D}^{r,s}(\Omega, E)}$. The domain of $\bar{\partial}_c$ denoted $\operatorname{Dom}(\bar{\partial}_c)$ consists of those forms f in $L^p_{r,s}(\Omega, E)$ for which there exist a sequence $\{f_i\}$ of elements f_i in $\mathcal{D}^{r,s}(\Omega, E)$ and a form g in $L^p_{r,s+1}(\Omega, E)$ such that $f_i \to f$ and $\bar{\partial}_c f_i \to g$ in the $L^p(\Omega, E)$ -norm. We then set $\bar{\partial}_c f = g$.

We consider also $\bar{\partial}_s: L^p_{r,s}(\Omega, E) \to L^p_{r,s+1}(\Omega, E)$ the minimal closed extension of $\bar{\partial}|_{\Lambda^{r,s}(X,E)|_{\Omega}}$, it is also a closed operator and $\operatorname{Dom}(\bar{\partial}_s)$ consists of those forms f in $L^p_{r,s}(\Omega, E)$ for which there exist a sequence $\{f_i\}$ of elements f_i in $\Lambda^{r,s}(\Omega, E)$ and a form $g \in L^p_{r,s+1}(\Omega, E)$ such that $f_i \to f$ and $\bar{\partial}_s f_i \to g$ in the $L^p(\Omega, E)$ -norm. We then set $\bar{\partial}_s f = g$.

The operator $\bar{\partial}$ extends to $L^p_{r,s}(\Omega, E)$, in the sense of distributions, so we can consider the operators $\bar{\partial}_{\tilde{c}}: L^p_{r,s}(\Omega, E) \to L^p_{r,s+1}(\Omega, E)$ and $\bar{\partial}: L^p_{r,s}(\Omega, E) \to L^p_{r,s+1}(\Omega, E)$ which coincides with the original $\bar{\partial}$ such that

 $\operatorname{Dom}(\bar{\partial}_{\bar{c}}) = \{ f \in L^p_{r,s}(X, E), \operatorname{supp} f \subset \overline{\Omega}, \, \bar{\partial}f \in L^p_{r,s+1}(X, E) \}, \text{ and } \operatorname{Dom}(\bar{\partial}) = \{ f \in L^p_{r,s}(\Omega, E), \, \bar{\partial}f \in L^p_{r,s+1}(\Omega, E) \}.$

We refer to [15, Chapter 4] for more details on maximal (minimal) closed extensions of differential operators.

Definition 3.2 (see e.g. [17]). A bounded domain D in a complex manifold X of complex dimension n is called a \mathcal{C}^d $(d \ge 2)$ q-convex intersection $(q \ge 1)$ in the sense of Grauert if there exist a bounded neighborhood U of \overline{D} and a finite number of real-valued \mathcal{C}^d functions $\rho_1(z), \ldots, \rho_b(z)$, where $n \ge b+2$, defined on U such that

$$D = \{ z \in U \mid \rho_1(z) < 0, \dots, \rho_b(z) < 0 \}$$

and the following conditions are fulfilled:

- (1) For $1 \leq i_1 < i_2 < \cdots < i_\ell \leq b$ the 1-forms $d\rho_{i_1}, \ldots, d\rho_{i_\ell}$ are \mathbb{R} -linearly independent on the set $\bigcap_{j=1}^{\ell} \{\rho_{i_j}(z) \leq 0\}.$
- (2) For $1 \leq i_1 < i_2 < \cdots < i_\ell \leq b$ and every $z \in \bigcap_{j=1}^{\ell} \{\rho_{i_j}(z) \leq 0\}$, if we set $I = (i_1, \ldots, i_\ell)$, there exists a linear subspace T_z^I of X of complex dimension at least n q + 1 such that for $i \in I$ the Levi forms L_{ρ_i} restricted on T_z^I are positive definite.

Theorem 3.3. Let $\Omega \subset X$ be a \mathcal{C}^3 q-convex intersection $(q \geq 1)$ in an ndimensional complex manifold X and E be a holomorphic Hermitian vector bundle of rank N over X. Then for any form f in $L^p_{r,s}(\Omega, E) \cap \operatorname{Ker}(\overline{\partial}), 1 \leq$ $p \leq \infty, q \leq s \leq n-1$, there exist bounded linear operators \widetilde{T}_s from $L^p_{r,s}(\Omega, E)$ into $L^p_{r,s-1}(\Omega, E)$ and compact linear operators \widetilde{K}_s from $L^p_{r,s}(\Omega, E)$ into itself such that

(4)
$$f = \bar{\partial} \tilde{T}_s f + \tilde{K}_s f \quad in \ \Omega.$$

Furthermore, for all s with $q \leq s \leq n-1$, the $L^p \cdot \bar{\partial}$ -cohomology group $H^{r,s}_{L^p}(\Omega, E)$ is finite dimensional and the space $\bar{\partial}(L^p_{r,s-1}(\Omega, E))$ is closed subspace of $L^p_{r,s}(\Omega, E)$.

Proof. Let $\Omega \subset \subset U \subset \mathbb{C}^n$ be a C^3 q-convex intersection with the defining functions $\{\rho_i\}_{i=1}^b$ and U as in Definition 3.2. Set

$$\Omega_I = \{ z \in U \mid \rho_i(z) < 0, \ i \in I \} \text{ and } S_I = \{ z \in U \mid \rho_i(z) = 0, \ i \in I \}.$$

For each $\xi \in S_I$ there exists a smoothly bounded strictly pseudoconvex domain D^* defined by $D^* = \{z \in U; \rho_*(z) < 0\}$ such that ∂D^* intersects real transversely $\{z \in U; \rho_{i_1}(z) < 0\}, \ldots, \{z \in U; \rho_{i_\ell}(z) < 0\}$ and $\xi \in D^*$.

Denote by I_* the multi-index $(i_1 \dots, i_{\ell}, *)$, where $I = (i_1 \dots, i_{\ell}), 1 \leq i_1 < \cdots < i_{\ell} < b$, and define

$$\Omega_{I_*} = \{ z \in U; \, \rho_j(z) < 0, \ j \in I_* \}.$$

The domain Ω_{I_*} is still q-convex and is called a local q-convex intersection. Since Ω_I is q-convex intersection, for every $z \in \Omega_I$ there is then an (n-q+1)linear vector subspace T_z^I of \mathbb{C}^n such that the Levi forms L_{ρ_i} are positive definite on T_z^I for all $i \in I$. Therefore, by means of generalized Berndtsson-Andersson formula with multiple weights, Lan Ma and Vassiliadou proved in [20] that if $f \in \mathcal{C}_{r,s}^1(\overline{\Omega_{I_*}})$ with $\overline{\partial}f \in \mathcal{C}_{r,s+1}^1(\overline{\Omega_{I_*}}), 0 \leq r \leq n, q \leq s \leq n-1$, there exist local kernels $K_s^{\varepsilon}(\zeta, z)$ ($\varepsilon > 0$) of bidegree (r, s) in z and of bidegree (n-r, n-s-1) in ζ such that the map

$$f\longmapsto \int_{\zeta\in\Omega_{I_*}} f(\zeta)\wedge K^{\varepsilon}_{s-1}(\zeta,z)$$

defines a bounded linear operator $T_s: \mathcal{C}^1_{r,s}(\overline{\Omega_{I_*}}) \to \mathcal{C}^1_{r,s-1}(\overline{\Omega_{I_*}})$, the map

$$f\longmapsto \int_{\zeta\in\partial\Omega_{I_*}} f(\zeta)\wedge K_s^\varepsilon(\zeta,z)$$

defines a compact linear operator $K_s : \mathcal{C}^1_{r,s}(\overline{\Omega_{I_*}}) \to \mathcal{C}^1_{r,s}(\overline{\Omega_{I_*}})$ and the homotopy formula

$$f = \bar{\partial}T_s f + T_{s+1}\bar{\partial}f + K_s f$$

holds on Ω_{I_*} for every f in $\mathcal{C}^1_{r,s}(\overline{\Omega_{I_*}})$ with $\bar{\partial}f$ in $\mathcal{C}^1_{r,s+1}(\overline{\Omega_{I_*}})$.

Now we extend these operators to E-valued (r, s)-forms defined on q-convex intersections in complex manifolds. Let $\Omega \subset \subset X$ be a \mathcal{C}^3 q-convex intersection $(q \geq 1)$ in an n-dimensional complex manifold X and E be a holomorphic Hermitian vector bundle over X. Cover $\overline{\Omega}$ by a finite number of open sets V_1, V_2, \ldots, V_m such that $\overline{\Omega} \subseteq V_1 \cup \cdots \cup V_m$ and for every $1 \leq j \leq m$ the intersection $V_j \cap \Omega$ is a local q-convex intersection, moreover, we may assume that E is trivial over some coordinates neighborhoods $z_j = (z_j^1, z_j^2, \ldots, z_j^n)$ of each $\overline{V_j \cap \Omega}$. Then, for every $f \in \mathcal{C}^1_{r,s}(\overline{\Omega \cap V_j}, E), q \leq s \leq n-1$, with $\overline{\partial}f = 0$, there exist bounded linear operators

$$T_s^j: \mathcal{C}_{r,s}^1(\overline{\Omega \cap V_j}, E) \longrightarrow \mathcal{C}_{r,s-1}^1(\overline{\Omega \cap V_j}, E)$$

and compact operators

$$K_s^j : \mathcal{C}_{r,s}^1(\overline{\Omega \cap V_j}) \to \mathcal{C}_{r,s}^1(\overline{\Omega \cap V_j})$$

such that the homotopy formulas

$$f = \bar{\partial}T_s^j f + K_s^j f$$

hold on $\Omega \cap V_j$ for all $f \in \mathcal{C}^1_{r,s}(\overline{\Omega \cap V_j}) \cap \operatorname{Ker}(\overline{\partial})$.

Choose a \mathcal{C}^{∞} partition of unity $\{\chi_j\}$ subordinate to the covering $\{V_j\}$ and define

$$\widetilde{T}_s f = \sum_{j=1}^m \chi_j T_s^j f$$
 and $\widetilde{K}_s f = \sum_{j=1}^m \chi_j K_s^j f$

for $f \in \mathcal{C}^1_{r,s}(\overline{\Omega}, E) \cap \operatorname{Ker}(\overline{\partial}), q \leq s \leq n-1$. We then have

(5)
$$f = \overline{\partial} \widetilde{T}_s f + \widetilde{K}_s f, \quad f \in \mathcal{C}^1_{r,s}(\overline{\Omega}, E) \cap \operatorname{Ker}(\overline{\partial}), \quad q \le s \le n-1.$$

By using the L^p -estimates proved in [20] and the mollification method of Friedrichs (see e.g. [11]), the formula (5) extends to forms in $L^p_{r,s}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial})$ for all $1 \leq p \leq \infty$ and $q \leq s \leq n-1$. This proves (4). As the operators \widetilde{K}_s are compact operators from $L^p_{r,s}(\Omega, E)$ into itself, the operator $Id - \widetilde{K}_s$ is a Fredholm operator maps $L^p_{r,s}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial})$ into itself whose range is contained in $\bar{\partial}(L^p_{r,s-1}(\Omega, E))$ by the formula (4) and hence the dimension of the cohomology group $H^{r,s}_{L^p}(\Omega, E)$ is smaller than the codimension of the range of $Id - \widetilde{K}_s$ which is finite. Therefore, the open mapping theorem implies that $\bar{\partial}(L^p_{r,s-1}(\Omega, E))$ is a closed subspace of $L^p_{r,s}(\Omega, E)$. The proof is complete. \Box

By using a partition of unity and the L^p -estimates obtained in [2, Theorem 0.1], we have the following L^p -existence theorem.

Theorem 3.4. Let $\Omega \subset \subset X$ be a C^3 q-convex intersection $(q \ge 1)$ in a Kähler manifold X of complex dimension n and E be a holomorphic Hermitian vector bundle of rank N over X. Then

(i) If E is Nakano semi-positive of type m on Ω, then for any ∂-closed form f in L¹_{n,s}(Ω, E) there exists a form g in L¹_{n,s-1}(Ω, E) such that ∂g = f for all s so that max{q,m} ≤ s ≤ n − 1. Moreover, if f is in L^p_{n,s}(Ω, E), 1 ≤ p ≤ ∞, then g is in L^p_{n,s-1}(Ω, E) and there is a constant C_s > 0 (independent of f and p) such that

 $||g||_{L^p_{n,s-1}(\Omega,E)} \le C_s ||f||_{L^p_{n,s}(\Omega,E)}, \quad 1 \le p \le \infty.$

 (ii) If E is Nakano semi-negative of type m on Ω, the assertion (i) holds for E-valued (0, s)-forms with L^p-coefficients, for all q ≤ s ≤ n − m, 1 ≤ q, m ≤ n − 1 and n ≥ 2.

Since the q-convexity is stable with respect to small \mathcal{C}^3 perturbations, we may assume that the defining functions ρ_i of Ω are Morse functions (i.e., all critical points of ρ_i are non-degenerate and if ζ_1 and ζ_2 are two different critical points of ρ_i , then $\rho_i(\zeta_1) = \rho_i(\zeta_2)$). Then we can approximate Ω from inside

by a sequence of C^3 q-convex intersections $\{\Omega_k\}$ such that $\Omega_k \subset \subset \Omega_{k+1} \subset \subset \Omega$ and $\Omega = \bigcup_k \Omega_k$. This approach is known as Grauert's bumping method where each Ω_{k+1} is obtained from Ω_k by an appropriate small bump (see e.g. [16] for the q-convex (q-concave) domains or [22] for q-convex intersections). Then, as in [19, Theorem 2.10], the next theorem follows immediately from Theorems 3.3 and 3.4.

Theorem 3.5. Let Ω , X and E be given as in Theorem 3.4. Then we have the following assertions.

 (i) If E is Nakano semi-positive of type m on Ω, then for all s so that max{q,m} ≤ s ≤ n − 1, we have

$$H_{L^p}^{n,s}(\Omega, E) \sim H_{L^{p,\text{loc}}}^{n,s}(\Omega, E).$$

(ii) If E is Nakano semi-negative of type m on $\overline{\Omega}$, then for all s so that $q \leq s \leq n-m, 1 \leq q, m \leq n-1, n \geq 2$, we have

$$H^{0,s}_{L^p}(\Omega, E) \sim H^{0,s}_{L^{p,\mathrm{loc}}}(\Omega, E).$$

We note that since every smooth domain in the complex plane is strictly pseudoconvex, the assertions (i) in Theorems 3.4 and 3.5 are still valid when n = 1 and E is the trivial line bundle with the flat metric with q = s = m = 1.

Following [19], we recall that for any two real numbers p and p' so that p > 1and $\frac{1}{p} + \frac{1}{p'} = 1$ and any $r \in \mathbb{N}$ with $0 \leq r \leq n$, the complexes $(L^p_{r,\bullet}(\Omega, E), \bar{\partial})$ and $(L^{p'}_{n-r,\bullet}(\Omega, E^*), \bar{\partial}_c)$ are dual complexes. Moreover, we recall the following abstract result on duality.

Proposition 3.6. Let (E^{\bullet}, d) and (E'_{\bullet}, d') be two dual complexes of reflexive Banach spaces with densely defined unbounded operators. Assume that $H_s(E'_{\bullet})$ is Hausdorff and $H_{s+1}(E'_{\bullet}) = 0$, then $H^{s+1}(E^{\bullet}) = 0$.

Let p, p' > 1 be real numbers with $\frac{1}{p} + \frac{1}{p'} = 1$. It follows from Theorem 3.3 and Theorem 3.4(i) that the cohomology group $H_{L^{p'}}^{n,s}(\Omega, E)$ is Hausdorff for all s such that $q \leq s \leq n-1$ and $H_{L^{p'}}^{n,s}(\Omega, E) = 0$ for all s such that $\max\{q, m\} \leq s \leq n-1$. Moreover, by Theorem 3.3 and Theorem 3.4(ii), we get that $H_{L^{p'}}^{0,s}(\Omega, E)$ is Hausdorff for all $q \leq s \leq n-1$ and $H_{L^{p'}}^{0,s}(\Omega, E) = 0$ for all $q \leq s \leq n-1$ and $H_{L^{p'}}^{0,s}(\Omega, E) = 0$ for all $q \leq s \leq n-1$ and $H_{L^{p'}}^{0,s}(\Omega, E) = 0$ for all $q \leq s \leq n-m$, where $1 \leq q, m \leq n-1$ and $n \geq 2$.

End proof of Theorem 1.1. On applying Proposition 3.6 to the complex (E^{\bullet}, d) with, for fixed r so that $0 \leq r \leq n$, $E^s = L_{r,s}^{p'}(\Omega, E^*)$ if $0 \leq s \leq n$ and $E^s = \{0\}$ if s < 0 or s > n, and $d = \bar{\partial}_{\bar{c}}$, we deduce that the cohomological hypotheses of Theorem 2.20 in [19] are satisfied in the current situations. This implies L^p -solvability for the $\bar{\partial}$ -equation with exact support on a q-convex intersection in a complex manifold, and this completes the proof of Theorem 1.1.

4. $\bar{\partial}$ -closed extensions of forms in L^p

As an application of Theorem 1.1, we obtain a Hartogs-like extension theorem for $\bar{\partial}$ -closed forms.

Theorem 4.1. Let $\Omega \subset \subset X$ be a C^3 q-convex intersection $(q \ge 1)$ in a Kähler manifold X of complex dimension $n \ge 3$ such that $X \setminus \Omega$ is connected. Let E be a holomorphic Hermitian vector bundle of rank N over X.

(1) If E is Nakano semi-positive of type m on $\overline{\Omega}$, then for every $\overline{\partial}$ -closed form f in $W_{0,s}^{1,p'}(X \setminus \Omega, E^*)$, $1 \leq s \leq \min\{n-q, n-m\}$, $2 \leq q, m \leq n-1$, there exists a form F in $L_{0,s}^{p'}(X, E^*)$ such that $F|_{X \setminus \Omega} = f$ and $\overline{\partial}F = 0$ in X in the distribution sense.

For s = n - 1, if we assume furthermore that the restriction of f to $\partial\Omega$ satisfies the moment condition

$$\int_{\partial\Omega} f \wedge \phi = 0, \quad \forall \ \phi \in L^p_{n,0}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial}),$$

then the same statement holds.

(2) If E is Nakano semi-negative of type m on $\overline{\Omega}$, then statement (1) holds for all $\overline{\partial}$ -closed form f in $W_{n,s}^{1,p'}(X \setminus \Omega, E^*)$ for $m \leq s \leq n-q$ and $2 \leq q, m \leq n-1$.

For s = n - 1, the same statement holds true if we assume furthermore that f satisfies the moment condition

$$\int_{\partial\Omega} f \wedge \phi = 0, \quad \forall \ \phi \in L^p_{n,0}(\Omega, E) \cap \operatorname{Ker}(\bar{\partial}).$$

Proof. We consider the assertion in (1), i.e., the case when E is Nakano semipositive of type m on $\overline{\Omega}$, as the defining functions ρ_i of Ω are of class \mathcal{C}^3 , there is a bounded extension operator of $W_{0,s}^{k,p'}(X \setminus \Omega, E^*)$ into $W_{0,s}^{k,p'}(X, E^*)$ for all $k \geq 0$ and $1 \leq p' < \infty$ (see e.g. [8, Theorem 9.7]). Let $\tilde{f} \in W_{0,s}^{1,p'}(X, E^*)$ be the extension of f such that $\tilde{f}|_{X\setminus\Omega} = f$. Then $\bar{\partial}\tilde{f}$ is in $L_{0,s+1}^{p'}(X, E^*)$ and is compactly supported in $\overline{\Omega}$. In view of Theorem 1.1, there exists a form g in $L_{0,s}^{p'}(X, E^*)$ with compact support in $\overline{\Omega}$ such that $\bar{\partial}g = \bar{\partial}\tilde{f}$ in the distribution sense in X. Set $F = \tilde{f} - g$, we have $\bar{\partial}F = 0$ in $X, F|_{X\setminus\Omega} = f$ and F is compactly supported in $\overline{\Omega}$. Thus the form $F \in L_{0,s}^{p'}(X, E^*)$ is the desired $\bar{\partial}$ -closed extension of f to X. The assertion in (2) follows on using similar arguments. This completes the proof. \Box

Corollary 4.2. Let Ω_1 and Ω_2 be two strictly q-convex and q^* -convex intersections with smooth \mathcal{C}^{∞} boundaries in an $n \geq 3$ -dimensional Kähler manifold X, respectively, such that $\overline{\Omega}_2 \subset \Omega_1 \subset X$. Assume that $H_{L_p}^{r,s}(X) = 0$. Then for any $\overline{\partial}$ -closed form f in $W_{r,s}^{1,p}(\Omega_1 \setminus \overline{\Omega}_2)$ there exists a form u in $W^{1,p}_{r,s-1}(\Omega_1 \setminus \overline{\Omega}_2) \cap W^{\frac{1}{2},p}_{r,s}(\Omega_1 \setminus \overline{\Omega}_2)$ such that $\overline{\partial}u = f$ in $\Omega_1 \setminus \overline{\Omega}_2$, where $r \ge 0$, $q^* \le s \le n-q-1$.

References

- O. Abdelkader and S. Khidr, Solutions to ∂-evations on stronly pseudo-convex domains with L^p-estimates, Electron. J. Differential Equations 2004 (2004), no. 73, 1–9.
- [2] _____, Solutions to ∂-equations on strongly q-convex domains with L^p-estimates, Int. J. Geom. Methods Mod. Phys. 1 (2004), no. 6, 739–749.
- [3] E. Amar, An Andreotti-Grauert theorem with L^r estimates, arXiv: 1203.0759v7, 2014.
- [4] E. Amar and S. Mongodi, On L^r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation, Ann. Mat. Pura Appl. 193 (2014), no. 4, 999–1018.
- [5] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem I: Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), no. 2, 325–363.
- [6] _____, E. E. Levi convexity and the Hans Lewy problem II: Vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), no. 4, 747–806.
- [7] A. Andreotti and A. Kas, *Duality on complex spaces*, Ann. Scoula Norm. Sup. Pisa (3) 27 (1973), no. 2, 187–263.
- [8] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2010.
- J. Brinkschulte, The ∂-problem with support conditions on some weakly pseudoconvex domains, Ark. Mat. 42 (2004), no. 2, 259–282.
- [10] D. Chakrabarti and M.-C. Shaw, L² Serre duality on domains in complex manifolds and applications, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3529–3554.
- [11] S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Stud. Adv. Math., 19, Amer. Math. Soc. Providence, R.I., 2001.
- [12] M. Derridj, Le problème de Cauchy pour ∂ et application, Ann Sci. École Norm. Sup.
 (4) 17 (1984), no. 3, 439–449.
- [13] _____, Regularité pour ∂ dans quelques domaines faiblement pseudo-convexes, J. Differential Geom. 13 (1978), no. 4, 559–576.
- [14] _____, Inégalités de Carleman et extension locale des fonctions holomorphes, Ann. Scuola Sup. Pisa Cl. Sci. (4) 9 (1982), no. 4, 645–669.
- [15] G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, Springer-Verlag, New York, 2009.
- [16] G. M. Henkin and J. Leiterer, Andreoutti-Grauert Theory by Integral Formulas, Progress in Math. 74, Birkhäuser-Verlag, Boston, 1988.
- [17] S. Khidr, Solving ô with L^p-estimates on q-convex intersections in complex manifold, Complex Var. Elliptic Equ. 53 (2008), no. 3, 253–263.
- [18] M. Landucci, Cauchy Problem for ∂-operator in strictly pseudoconvex domains, Boll. Un. Mat. Ital. (5) 13A (1976), no. 1, 180–185.
- [19] C. Laurent-Thiébaut, Théorie L^p pour l'équation de Cauchy-Riemann, Ann. Fac. Sci. Toulouse Math. (6) 24 (2015), no. 2, 251–279.
- [20] L. Ma and S. K. Vassiliaduo, L^p-estimates for the Cauchy-Riemann operator on qconvex intersections in Cⁿ, Manuscr. Math. 103 (2000), no. 4, 413–433.
- [22] H. Ricard, Estimations C^k pour l'Opérator de Cauchy-Riemann sur des domaines à Coins q-Convexes et q-Concaves, Math. Z. 244 (2003), no. 2, 349–398.
- [23] S. Sambou, Résolution du \(\overline{\Delta}\) pour les courants prolongeables, Math. Nachr. 235 (2002), no. 1, 179–190.
- [24] _____, Résolution du $\bar{\partial}$ pour les courants prolongeables définis dans un anneau, Ann. Fac. Sci. Toulouse Math. (6) **11** (2002), no. 1, 105–129.

SHABAN KHIDR MATHEMATICS DEPARTMENT FACULTY OF SCIENCE UNIVERSITY OF JEDDAH 21589 JEDDAH, SAUDI ARABIA AND MATHEMATICS DEPARTMENT FACULTY OF SCIENCE BENI-SUEF UNIVERSITY 62511 BENI-SUEF, EGYPT *E-mail address*: skhidr@science.bsu.edu.eg