• Title/Summary/Keyword: Dual-transmitter

Search Result 56, Processing Time 0.019 seconds

Design of Dual-Band WLAN Transmitter with Frequency Doubler (주파수 체배기를 이용한 이중대역 무선 송신부 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2008
  • This paper describes the Dual-band WLAN transmitter with 2.4[GHz], 5[GHz]. Dual-band WLAN transmitter was designed at 2.4[GHz] and 5[GHz]. The Dual-band WLAN transmitter has a amplifier which operate at 2.4[GHz] and 5[GHz] frequency and two VCO(Voltage Controlled Oscillator) or VCO has a wide scope of frequency. these problem cause a size and a power consumption, The Dual-band WLAN transmitter module was proposed to solve these. the transmitter was designed to get output signals of IEEE 802.11a's 5.8[GHz] band signal using frequency multiplication way or to act a amplifier about the 2.4[GHz] band signal of IEEE 802.11b/g, according to inputed frequency and bias voltage that a eve using single transmission block. The output spectrum get the improved specification of ACPR of 4[dB], 6[dB], 16[dB] at +11[MHz], +20[MHz], +30[MHz] offset of center frequency compared to no linearization, was satisfied to transmit spectrum mask of IEEE 802.11a wireless Lan.

A Dual-Band Transmitter RF Front-End for IMT-Advanced system in 0.13-μm CMOS Technology (IMT-Advanced 표준을 지원하는 이중대역 0.13-μm CMOS 송신기 RF Front-End 설계)

  • Shin, Sang-Woon;Seo, Yong-Ho;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.273-278
    • /
    • 2011
  • This paper has proposed a dual-band transmitter RF Front-end for IMT-Advanced systems which has been implemented in a 0.13-${\mu}m$ CMOS technology. The proposed dual-band transmitter RF Front-End covers 2300~2700 MHz, 3300~3800 MHz frequency ranges which support 802.11, Mobile WiMAX, and IMT-Advanced system. The proposed dual-band transmitter RF Front-End consumes 45 mA from a 1.2 V supply voltage. The performances of the transmitter RF Front-End are verified through post-layout simulations. The simulation results show a +0 dBm output power at 2 GHz band, and +1.3 dBm output power at 3 GHz band.

Leakage Magnetic Field Suppression Using Dual-Transmitter Topology in EV Wireless Charging

  • Zhu, Guodong;Gao, Dawei;Lin, Shulin
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.625-636
    • /
    • 2019
  • This paper proposes an active leakage magnetic field (LMF) suppression scheme, which uses the dual-transmitter (DT) topology, for EV wireless charging systems (EVWCS). The two transmitter coils are coplanar, concentric and driven by separate inverters. The LMF components generated by the three coils cancel each other out to reduce the total field strength. This paper gives a detailed theoretical analysis on the operating principles of the proposed scheme. Finite element analysis is used to simulate the LMF distribution patterns. Experimental results show that when there is no coil misalignment, 97% of the LMF strength can be suppressed in a 1kW prototype. These results also show that the impact on efficiency is small. The trade-off between LMF suppression and efficiency is revealed, and a control strategy to balance these two objectives is presented.

Development of miniaturized dual-frequency FM transmitter (소형화된 듀얼 주파수 FM 송신기 개발)

  • Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.5
    • /
    • pp.31-35
    • /
    • 2011
  • In this paper, the miniaturized FM transmitter with dual-frequency is developed, and tested in the field. In this system two frequencies 88.1 MHz and 88.3 MHz is used. The transmitter is designed with 2.6 cm^3 system size, horizontal, vertical, height respectively. The operating voltage is 3.7 V and used the built-in storage battery in order to minimize. The system can use continuously during 7 hour with once charging. The channel separation ability is 40 dB. Consequently, this system is used conveniently with short distance information transmitter system at the industry field.

Polar Transmitter with Differential DSM Phase and Digital PWM Envelope

  • Zhou, Bo;Liu, Shuli
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.313-321
    • /
    • 2014
  • A low-power low-cost polar transmitter for EDGE is designed in $0.18{\mu}m$ CMOS. A differential delta-sigma modulator (DSM) tunes a three-terminal voltage-controlled oscillator (VCO) to perform RF phase modulation, where the VCO tuning curve is digitally pre-compensated for high linearity and the carrier frequency is calibrated by a dual-mode low-power frequency-locked loop (FLL). A digital intermediate-frequency (IF) pulse-width5 modulator (PWM) drives a complementary power-switch followed by an LC filter to achieve envelope modulation with high efficiency. The proposed transmitter with 9mW power dissipation relaxes the time alignment between the phase and envelope modulations, and achieves an error vector magnitude (EVM) of 4% and phase noise of -123dBc/Hz at 400kHz offset frequency.

A New Dual-Active Soft-Switching Converter for an MTEM Electromagnetic Transmitter

  • Wang, Xuhong;Zhang, Yiming;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1454-1468
    • /
    • 2017
  • In this study, a new dual-active soft-switching converter is proposed to improve conversion efficiency and extend the load range for an MTEM electromagnetic transmitter in geological exploration. Unlike a conventional DC/DC converter, the proposed converter can operate in passive soft-switching, single-active soft-switching, or dual-active soft-switching modes depending on the change in load power. The main switches and lagging auxiliary switches of the converter can attain soft-switching over the entire load range. The conduction and switching losses are greatly reduced compared with those of ordinary converters under the action of the cut-off diodes and auxiliary windings coupled to the main transformer in the auxiliary circuits. The conversion efficiency of the proposed converter is significantly improved, especially under light-load conditions. First, the working principle of the proposed converter is analyzed in detail. Second, the relationship between the different operating modes and the load power is given and the design principle of the auxiliary circuit is presented. Finally, the Saber simulation and experimental results verify the feasibility and validity of the converter and a 50 kW prototype is implemented.

Implementation of the Ultrasonic Local Positioning System using Dual Frequencies and Codes (이중 주파수와 코드를 이용한 초음파 위치 인식 시스템 구현)

  • Cho, Bong-Su;Cho, Seck-Bin;Yang, Sung-Oh;Baek, Kwang-Ryul;Lee, Dong-Hwal
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.647-655
    • /
    • 2008
  • This paper presents real-time algorithm for an ultrasonic Local Positioning System(LPS). An ultrasonic LPS consists of 4 transmitters and n receivers. Each transmitter transmits an sequential ultrasonic signal to avoid interference of ultrasonic signal. This method is a noneffective application for a fast object. Because receiver detects four sequential transmissive ultrasonic signal and calculates a position. This paper proposes the method which 4 transmitters transmit simultaneous ultrasonic signal and each transmitter distinguished by frequencies and codes. And Auto-Correlation Function(ACF) method separates codes from an ultrasonic echo signal which is interference of each transmitter's code. If the receiver uses only ACF method, it is difficult to implement real time application for increased computation. This paper implements LPS using dual frequencies and ACF method. Using dual frequencies reduces codes length. The reduced codes length save computation in ACF. To prove this algorithm by experiment, high performance DSP(digital signal processor) used. The result shows the performance of the designed system is good enough positioning.

Dual Mode Power Amplifier for WiBro and Wireless LAN Using Drain Bias Switching (드레인 바이어스 스위칭을 이용한 와이브로/무선랜 이중 모우드 전력증폭기)

  • Lee, Young-Min;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.1-6
    • /
    • 2007
  • A drain bias switching technique is presented to enhance power added efficiency for WiBro and wireless LAN dual band and dual mode transmitter. Some simulations have been done to predict the effect of drain and gate bias change, and bias switching is proposed to get the higher efficiency for dual mode transmitter which generates different output power for different applications. With drain bias switching and simulated optimum fixed gate bias, the amplifier shows dramatic PAE improvement compared to the amplifier without bias switching. The drain and gate bias switching technique will be useful for multi mode communication system with various functions.

A Low-Power Low-Complexity Transmitter for FM-UWB Systems

  • Zhou, Bo;Wang, Jingchao
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.194-201
    • /
    • 2015
  • A frequency modulated ultra-wideband (FM-UWB) transmitter with a high-robust relaxation oscillator for subcarrier generation and a dual-path Ring VCO for RF FM is proposed, featuring low power and low complexity. A prototype 3.65-4.25 GHz FM-UWB transceiver employing the presented transmitter is fabricated in $0.18{\mu}m$ CMOS for short-range wireless data transmission. Experimental results show a bit error rate (BER) of $10^{-6}$ at a data rate of 12.5 kb/s with a communication distance of 60 cm is achieved and the power dissipation of 4.3 mW for the proposed transmitter is observed from a 1.8 V supply.

Flight Performance of a Dual One-Way Carrier Phase Ranging Instrument (이중단방향 반송파 거리측정기 비행성능 분석)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2009
  • One of the error sources for microwave ranging is the instability of the oscillator that drives the microwave signals. Dual one-way ranging (DOWR) minimizes the oscillator effect by combining two one-way carrier phase signals from two transmitter/receiver instrument. The DOWR is first implemented in the GRACE (Gravity Recovery and Climate Experiment) satellites. Direct evaluation of the DOWR is not possible due to its extremely high accuracy. The flight performance of the GRACE DOWR is analyzed by applying several indirect methods. Comparison with the design noise level is discussed.

  • PDF