• 제목/요약/키워드: Dual-peak resonance

검색결과 12건 처리시간 0.029초

Dual-function Dynamically Tunable Metamaterial Absorber and Its Sensing Application in the Terahertz Region

  • Li, You;Wang, Xuan;Zhang, Ying
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.252-259
    • /
    • 2022
  • In this paper, a dual-function dynamically tunable metamaterial absorber is proposed. At frequency points of 1.545 THz and 3.21 THz, two resonance peaks with absorption amplitude of 93.8% (peak I) and 99.4% (peak II) can be achieved. By regulating the conductivity of photosensitive silicon with a pump laser, the resonance frequency of peak I switches to 1.525 THz, and that of peak II switches to 2.79 THz. By adjusting the incident polarization angle by rotating the device, absorption amplitude tuning is obtained. By introducing two degrees of regulation freedom, the absorption amplitude modulation and resonant frequency switching are simultaneously realized. More importantly, dynamic and continuous adjustment of the absorption amplitude is obtained at a fixed resonant frequency, and the modulation depth reaches 100% for both peaks. In addition, the sensing property of the proposed MMA was studied while it was used as a refractive index sensor. Compared with other results reported, our device not only has a dual-function tunable characteristic and the highest modulation depth, but also simultaneously possesses fine sensing performance.

RFID 이중 UHF 대역 인식 시스템용 안테나 소형화 설계 (Design of a Size-reduced RFID Dual-UHF-Band Reader Antenna)

  • 강승택;김형석
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1719-1724
    • /
    • 2013
  • In this paper, a size-reduction technique is presented for the RFID reader antenna working at two UHF bands. To tackle the problem of size increase in multi-band applications, two resonance paths are made to occur in one geometry with a single feed. While one resonance path is combined with the other, the entire geometry is determined to guarantee the resonance at the target frequencies through the dual-band input impedance matching. The antenna performance is predicted by the full-wave simulation, and the design method is verified by observing the good agreement between the simulated and measured results. At the two frequencies, the satisfactory return loss as well as the antenna efficiency and peak gain of the far-field pattern is obtained.

Sensing Characteristics of Uncoated Double Cladding Long-period Fiber Grating Based on Mode Transition and Dual-peak Resonance

  • Zhou, Yuan;Gu, Zheng Tian;Ling, Qiang
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.243-249
    • /
    • 2021
  • In this paper, the sensing characteristics of a double cladding fiber (DCF) long-period fiber grating (LPFG) to the surrounding refractive index (SRI) are studied. The outer cladding of the DCF plays the role of the overlay, thus, the mode transition (MT) phenomenon of DCF can be induced by etching the outer cladding radius instead of coating overlays. The response characteristics of the effective refractive index (ERI) of the cladding mode to the outer cladding radius are analyzed. It is found that in the MT range, the change rate of ERIs of cladding modes is relatively larger than that for other ranges. Further, based on the features of the mode transition region (MTR), the phase-matching curve of the 11th cladding mode is investigated, and the response of the DCF-LPFG to the SRI is characterized by the change of wavelength intervals between the dual peaks under different outer cladding radii. The numerical simulation results show that the SRI sensitivity is greatly improved, which is available to 3484.0 nm/RIU with the fitting degree 0.998 in the SRI range of 1.33-1.37. The proposed DCF-LPFG can provide new theoretical support for designing the DCF-LPFG refractive index sensor with excellent performances of sensitivity, linearity and structure.

다중 공진을 이용한 이중 부이 파력발전장치의 모형실험 (Model Test of Dual-Buoy Wave Energy Converter using Multi-resonance)

  • 김정록;현종우;고혁준;권혁민;조일형
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.191-198
    • /
    • 2015
  • In this study, we proposed a new type of dual-buoy wave energy converter (WEC) exploiting multi-resonance and analyzed the experimental results from a model test in a 2-D wave flume. A dual-buoy WEC using multi-resonance has two advantages: high efficiency at the resonant frequencies and the potential to extend the frequency range available to extract wave power from the WEC. The suggested WEC was composed of an outer buoy and an inner buoy sliding vertically inside the outer buoy. As the power take-off device, a linear electric generator (LEG) consisting of permanent magnets and coils fixed at each buoy was adopted. Electricity was produced by the relative heave motion between the two buoys. To search for the optimal shape of a dual-buoy WEC, we conducted experiments on the heave motion of a two-body system in regular waves without an LEG installed. Model tests with six combinations of experimental models were conducted in order to find the motion characteristics of a dual-buoy WEC. It was found that model 2, which included a ring-shaped appendage to move the resonant frequency of the outer buoy toward a high value, showed a higher relative heave response amplitude operator (RAO) curve than model 1. In addition, the double-peak shape of the heave RAO curve shown for model 2 indicated the extension of the frequency range for extracting wave power in irregular waves.

Experimental study of wave energy extraction by a dual-buoy heaving system

  • Kim, J.;Koh, H.J.;Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.25-34
    • /
    • 2017
  • The concentric dual-buoy Wave Energy Converter (WEC), which consists of external buoy (hallow-cylinder) with toroidal appendage and cylindrical internal buoy within the moon-pool is suggested in this research and its performance in various wave conditions is studied. The Linear Electric Generator (LEG), consisting of a permanent magnet and coils, is used as a direct Power Take-Off (PTO) system. To maximize the electrical energy extracted from the PTO system, the relative heave motions between the dual buoys must be highly amplified by the multiple resonance phenomena of dual-buoy and internal-fluid motions. The high-performance range can be widened by distributing those natural frequencies with respect to the peak frequency of the wave spectrum. The performance of the newly developed dual-buoy WEC was measured throughout the systematic 1:5.95-model test in regular and irregular waves conducted in a wave tank at Seoul National University. The model-test results are also validated by an independently developed numerical method.

이중 대역 동작을 위한 변형 스파이럴 모노폴 인쇄형 안테나 설계 (Design of Modified Spiral Monopole Printed Antenna for Dual Band Operation)

  • 정새한솔;정진우;임영석
    • 한국전자파학회논문지
    • /
    • 제21권9호
    • /
    • pp.933-939
    • /
    • 2010
  • 본 논문에서는 GPS(1.57~1.577 GHz)와 WiBro(2.3~2.4 GHz), WLAN(2.4~2.48 GHz)에서 이중 대역 동작하는 변형 스파이럴 모노폴 인쇄형 안테나를 설계 제작하였다. 이중 대역 동작하는 안테나 설계 시 필요한 주파수비를 자유롭게 조절하기 위해, 기본 공진 주파수와 3배수 하모닉 공진 주파수의 전류 분포가 다름을 이용하여 스파이럴 내부 선로의 간격을 다르게 하고 브랜치 라인을 삽입하였다. 측정 대역폭은 기본 공진 주파수에서 140 MHz(1.47~1.61 GHz), 3배수 하모닉 공진 주파수에서 420 MHz(2.29~2.71 GHz)로 나타났다. 최대 방사 이득은 GPS(1.575 GHz) 대역에서 2.825 dBi, WiBro(2.35 GHz) 대역에서 3.65 dBi, 그리고 WLAN(2.45 GHz) 대역에서 4.564 dBi로 측정되었다.

Design of the dual-buoy wave energy converter based on actual wave data of East Sea

  • Kim, Jeongrok;Kweon, Hyuck-Min;Jeong, Weon-Mu;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.739-749
    • /
    • 2015
  • A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: $36.404N^{\circ}$ and $129.274E^{\circ}$) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.

지반진동절연을 위한 공압제진대의 전달률 설계기법 (An Efficient Transmissibility-design Technique for Pneumatic Vibration Isolator)

  • 이정훈;김광준
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.411-423
    • /
    • 2008
  • Pneumatic vibration isolator has a wide application for ground-vibration isolation of vibration-sensitive equipments. Recent advances In precision machine tools and instruments such as nano-technology or medical devices require a better isolation performance, which can be efficiently done by precise modeling- and design- of the isolation system. This paper will discuss an efficient transmissibility design method for pneumatic vibration isolator by employing the complex stiffness model of dual-chamber pneumatic spring developed in our previous research. Three design parameters of volume ratio between the two pneumatic chambers, the geometry of capillary tube connecting the two pneumatic chambers and finally the stiffness of diaphragm necessarily employed for prevention of air leakage were found to be important factors in transmissibility design. Based on design technique that maximizes damping of dual-chamber pneumatic spring, trade-off among the resonance frequency of transmissibility, peak transmissibility and transmissibility in high frequency range was found, which was not ever stated in previous researches. Furthermore this paper will discuss about negative role of diaphragm in transmissibility design. Then the design method proposed in this paper will be illustrated through experiment at measurements.

스파이럴과 미앤더 구조를 이용한 이중 대역 인쇄형 모노폴 안테나 (Dual Band Printed Monopole Antenna Using Spiral and Meander Structure)

  • 정새한솔;정진우;이현진;임영석
    • 한국전자파학회논문지
    • /
    • 제22권6호
    • /
    • pp.625-630
    • /
    • 2011
  • 본 논문에서는 GPS(1.57~1.577 GHz)와 WiBro(2.3~2.4 GHz), WLAN(2.4~2.48 GHz)에서 동작하는 이중 대역 스파이럴 미앤더 모노폴 인쇄형 안테나를 설계 및 제작하였다. 하모닉 공진 주파수의 전류의 크기와 기본 공진 주파수의 전류의 크기가 다른 모노폴 끝단에 포지티브 커플링이 생기는 스파이럴 구조를 위치하여 기본 공진 주파수와 하모닉 공진 주파수의 주파수 비를 조절하였다. 또한, 선로의 간격을 조절해 커플링 영향 분석으로 주파수 비를 조절하였다. 측정 대역폭은 기본 공진 주파수에서 130 MHz(1.49~1.62 GHz), 3배수 하모닉 공진 주파수에서 330 MHz(2.29~2.62 GHz)로 나타났다. 최대 방사 이득은 GPS(1.575 GHz) 대역에서 2.86 dBi, WiBro(2.35 GHz) 대역에서 3.49 dBi, 그리고 WLAN(2.45 GHz) 대역에서 3.71 dBi로 측정되었다.

Digital Control Methods of Two-Stage Electronic Ballast for Metal Halide Lamps with a ZVS-QSW Converter

  • Wang, Yijie;Zhang, Xiangjun;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.451-460
    • /
    • 2010
  • This paper presents a new kind of digital control metal halide lamp electronic ballast. A zero-voltage-switch quasi-square-wave (ZVS-QSW) dual Buck converter is adopted here. In this paper, a digital control method is proposed to achieve ZVS for the converter. This ZVS can be realized during the whole working condition. Single-cycle-peak-current control is proposed to solve the problem of excessive inductor current during a low-frequency reversal transient. Power loop control is also realized and its consistency for different lamps is good. An AVR special microcontroller for a HID ballast is used to raise the control performance, and the low-frequency square-wave control method is adopted to avoid acoustic resonance. A 70W prototype was built in the laboratory. Experimental results show that the electronic ballast works reliably. Furthermore, the efficiency of the ballast can be higher than 92%.