• Title/Summary/Keyword: Dual-energy computed tomography

Search Result 40, Processing Time 0.024 seconds

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

Analysis of Attenuation Differences According to Radiolucent and Radiopague Materials : Based on DECT (Dual Energy Computed Tomography) (방사선 투과 및 불투과성 물질에 따른 감약 차이의 분석 : DECT 검사 중심으로)

  • Jang, Hyon-Chol;Kim, Yoon-Shin;Kim, Hyeon-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1584-1589
    • /
    • 2014
  • This study analyzed CT values of radiolucent and radiopaque materials by energy region after selecting radiolucent and radiopaque materials at random using GE's DECT((Dual Energy Com-puted Tomography) at S University Hospital located in Gyeonggi-province from July through August in 2013. Besides, it drew out the most analogous energy region to the value of 120kVp CT, which is applied to existing SECT(Single Energy Computed Tomography), by utilizing the analysis method of CT values and tried to find out the most useful and appropriate materials when contrast was applied within visible area in clinical application. As a result, there was little decrease of CT value after 90KeV in the case of materials with low density and high moisture content such as normal saline, methyl-cellulose and gels used in ultra-sonic waves test; energy does not influence much on materials with extremely low or high density such as air and contrast medium; methyl-cellulose and gels used in ultra-sonic waves test are considered to be the most useful materials for clinical applications.

Stopping Power Ratio Estimation Method Based on Dual-energy Computed Tomography Denoising Images for Proton Radiotherapy Planning (양성자치료계획을 위한 이중에너지 전산화단층촬영 잡음 제거 영상 기반 저지능비 추정 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.207-213
    • /
    • 2023
  • Computed tomography (CT) images are used as the basis for proton Bragg peak position estimation and treatment plan simulation. During the Hounsfield Unit (HU) based proton stopping power ratio (SPR) estimation, small differences in the patient's density and elemental composition lead to uncertainty in the Bragg peak positions along the path of the proton beam. In this study, we investigated the potential of dual-energy computed tomography image-based proton SPRs prediction accuracy to reduce the uncertainty of Bragg peak position prediction. Single- and dual-energy images of an electron density phantom (CIRS Model 062M electron density phantom, CIRS Inc., Norfolk, VA, USA) were acquired using a computed tomography system (Somatom Definition AS, Siemens Health Care, Forchheim, Germany) to estimate the SPRs of the proton beam. To validate the method, it was compared to the SPRs estimated from standard data provided by the National Institute of Standards and Technology (NIST). The results show that the dual-energy image-based method has the potential to improve accuracy in predicting the SPRs of proton beams, and it is expected that further improvements in predicting the position of the proton's Bragg peak will be possible if a wider variety of substitutes with different densities and elemental compositions of the human body are used to predict the SPRs.

Utility of the computed tomography indices on cone beam computed tomography images in the diagnosis of osteoporosis in women

  • Koh, Kwang-Joon;Kim, Kyoung-A
    • Imaging Science in Dentistry
    • /
    • v.41 no.3
    • /
    • pp.101-106
    • /
    • 2011
  • Purpose : This study evaluated the potential use of the computed tomography indices (CTI) on cone beam CT (CBCT) images for an assessment of the bone mineral density (BMD) in postmenopausal osteoporotic women. Materials and Methods : Twenty-one postmenopausal osteoporotic women and 21 postmenopausal healthy women were enrolled as the subjects. The BMD of the lumbar vertebrae and femur were calculated by dual energy X-ray absorptiometry (DXA) using a DXA scanner. The CBCT images were obtained from the unilateral mental foramen region using a PSR-$9000N^{TM}$ Dental CT system. The axial, sagittal, and coronal images were reconstructed from the block images using $OnDemend3D^{TM}$. The new term "CTI" on CBCT images was proposed. The relationship between the CT measurements and BMDs were assessed and the intra-observer agreement was determined. Results : There were significant differences between the normal and osteoporotic groups in the computed tomography mandibular index superior (CTI(S)), computed tomography mandibular index inferior (CTI(I)), and computed tomography cortical index (CTCI). On the other hand, there was no difference between the groups in the computed tomography mental index (CTMI: inferior cortical width). Conclusion : CTI(S), CTI(I), and CTCI on the CBCT images can be used to assess the osteoporotic women.

APPLICATION OF A DUAL-ENERGY MONOCHROMATIC XRAY CT ALGORITHM TO POLYCHROMATIC X-RAY CT: A FEASIBILITY STUDY

  • Chang, S.;Lee, H.K.;Cho, G.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • In this study, a simple post-reconstruction dual-energy computed tomography (CT) method is proposed. A dual-energy CT algorithm for monochromatic x-rays was adopted and applied to the dual-energy CT of polychromatic x-rays by assigning a representative mono-energy. The accuracy of algorithm implementation was tested with mathematical phantoms. To test the sensitivity of this algorithm to the inaccuracy of representative energy value in energy values, a simulation study was performed with mathematical phantom. To represent a polychromatic x-ray energy spectrum with a single-energy, mean energy and equivalent energy were used, and the results were compared. The feasibility of the proposed method was experimentally tested with two different micro-CTs and a test phantom made of polymethyl methacrylate (PMMA), water, and graphite. The dual-energy calculations were carried out with CT images of all possible energy pairs among 40, 50, 60, 70, and 80 kVp. The effective atomic number and the electron density values obtained from the proposed method were compared with theoretical values. The results showed that, except the errors in the effective atomic number of graphite, most of the errors were less than 10 % for both CT scanners, and for the combination of 60 kVp and 70 kVp, errors less than 6.0 % could be achieved with a Polaris 90 CT. The proposed method shows simplicity of calibration, demonstrating its practicality and feasibility for use with a general polychromatic CT.

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

Does Simultaneous Computed Tomography and Quantitative Computed Tomography Show Better Prescription Rate than Dual-energy X-ray Absorptiometry for Osteoporotic Hip Fracture?

  • Ko, Jae Han;Lim, Suhan;Lee, Young Han;Yang, Ick Hwan;Kam, Jin Hwa;Park, Kwan Kyu
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.233-240
    • /
    • 2018
  • Purpose: This study aimed to evaluate the efficacy of simultaneous computed tomography (CT) and quantitative CT (QCT) in patients with osteoporotic hip fracture (OHF) by analyzing the osteoporosis detection rate and physician prescription rate in comparison with those of conventional dual-energy X-ray absorptiometry (DXA). Materials and Methods: This study included consecutive patients older than 65 years who underwent internal fixation or hip arthroplasty for OHF between February and May 2015. The patients were assigned to either the QCT (47 patients) or DXA group (51 patients). The patients in the QCT group underwent QCT with hip CT, whereas those in the DXA group underwent DXA after surgery, before discharge, or in the outpatient clinic. In both groups, the patients received osteoporosis medication according to their QCT or DXA results. The osteoporosis evaluation rate and prescription rate were determined at discharge, postoperative (PO) day 2, PO day 6, and PO week 12 during an outpatient clinic visit. Results: The osteoporosis evaluation rate at PO week 12 was 70.6% (36 of 51 patients) in the DXA group and 100% in the QCT group (P<0.01). The prescription rates of osteoporosis medication at discharge were 70.2% and 29.4% (P<0.001) and the cumulative prescription rates at PO week 12 were 87.2% and 60.8% (P=0.003) in the QCT and DXA groups, respectively. Conclusion: Simultaneous CT and QCT significantly increased the evaluation and prescription rates in patients with OHF and may enable appropriate and consistent prescription of osteoporosis medication, which may eventually lead to patients' medication compliance.

A clinical pilot study of jawbone mineral density measured by the newly developed dual-energy cone-beam computed tomography method compared to calibrated multislice computed tomography

  • Kim, Hyun Jeong;Kim, Ji Eun;Choo, Jiyeon;Min, Jeonghee;Chang, Sungho;Lee, Sang Chul;Pyun, Woong Beom;Seo, Kwang-Suk;Karm, Myong-Hwan;Koo, Ki-Tae;Rhyu, In-Chul;Myoung, Hoon;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.295-299
    • /
    • 2019
  • Purpose: This clinical pilot study was performed to determine the effectiveness of dual-energy cone-beam computed tomography (DE-CBCT) in measuring bone mineral density (BMD). Materials and Methods: The BMD values obtained using DE-CBCT were compared to those obtained using calibrated multislice computed tomography (MSCT). After BMD calibration with specially designed phantoms, both DE-CBCT and MSCT scanning were performed in 15 adult dental patients. Three-dimensional (3D) Digital Imaging and Communications in Medicine data were imported into a dental software program, and the defined regions of interest (ROIs) on the 3-dimensional surface-rendered images were identified. The automatically-measured BMD values of the ROIs (g/㎤), the differences in the measured BMD values of the matched ROIs obtained by DE-CBCT and MSCT 3D images, and the correlation between the BMD values obtained by the 2 devices were statistically analyzed. Results: The mean BMD values of the ROIs for the 15 patients as assessed using DE-CBCT and MSCT were 1.09±0.07 g/㎤ and 1.13±0.08 g/㎤, respectively. The mean of the differences between the BMD values of the matched ROIs as assessed using DE-CBCT and calibrated MSCT images was 0.04±0.02 g/㎤. The Pearson correlation coefficient between the BMD values of DE-CBCT and MSCT images was 0.982 (r=0.982, P<0.001). Conclusion: The newly developed DE-CBCT technique could be used to measure jaw BMD in dentistry and may soon replace MSCT, which is expensive and requires special facilities.

Reviews of Radiation Protection and Shielding for Computed Tomography in Foreign Countries (외국의 컴퓨터 단층촬영 장치의 방어시설 문헌 조사)

  • Jahng, Geon-Ho;Yang, Dal-Mo;Sung, Dong-Wook;Lee, Kwang-Yong;Kim, Hyeog-Ju
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.276-284
    • /
    • 2008
  • A computed tomography (CT) is a powerful system for the effectively fast and accurate diagnosis. The CT system, therefore, has used substantially and developed for improving the performance over the past decade, resulting in growing concerns over the radiation dose from the CT. Advanced CT techniques, such as a multidetector row CT scanner and dual energy or dual source CT, have led to new clinical applications that could result in further increases of radiation does for both patients and workers. The objective of this study was to review the international guidelines of the shielding requirements for a CT facility required for a new installation or when modifying an existing one. We used Google Search Engine to search the following keywords: computed tomography, CT regulation or shield or protection, dual energy or dual source CT, multidetector CT, CT radiation protection, and regulatory or legislation or regulation CT. In addition, we searched some special websites, that were provided for sources of radiation protection, shielding, and regulation, RSNA, AAPM, FDA, NIH, RCR, ICRP, IRPA, ICRP, IAEA, WHO (See in Table 1 for full explanations of the abbreviations). We finally summarized results of the investigated materials for each country. The shielding requirement of the CT room design was very well documented in the countries of Canada, United States of America, and United Kingdom. The wall thickness of the CT room could be obtained by the iso-exposure contour or the point source method. Most of documents provided by international organizations were explained in importance of radiation reduction in patients and workers. However, there were no directly-related documents of shielding and patient exposure dose for the dual energy CT system. Based international guidelines, the guideline of the CT room shielding and radiation reduction in patients and workers should be specified for all kinds of CT systems, included in the dual energy CT. We proposed some possible strategies in this paper.

  • PDF